Step |
Hyp |
Ref |
Expression |
1 |
|
limsupvaluzmpt.j |
|- F/ j ph |
2 |
|
limsupvaluzmpt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
limsupvaluzmpt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
limsupvaluzmpt.b |
|- ( ( ph /\ j e. Z ) -> B e. RR* ) |
5 |
1 4
|
fmptd2f |
|- ( ph -> ( j e. Z |-> B ) : Z --> RR* ) |
6 |
2 3 5
|
limsupvaluz |
|- ( ph -> ( limsup ` ( j e. Z |-> B ) ) = inf ( ran ( k e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) ) , RR* , < ) ) |
7 |
3
|
uzssd3 |
|- ( k e. Z -> ( ZZ>= ` k ) C_ Z ) |
8 |
7
|
resmptd |
|- ( k e. Z -> ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) = ( j e. ( ZZ>= ` k ) |-> B ) ) |
9 |
8
|
rneqd |
|- ( k e. Z -> ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) = ran ( j e. ( ZZ>= ` k ) |-> B ) ) |
10 |
9
|
supeq1d |
|- ( k e. Z -> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) |
11 |
10
|
mpteq2ia |
|- ( k e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) ) = ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) |
12 |
11
|
a1i |
|- ( ph -> ( k e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) ) = ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) ) |
13 |
12
|
rneqd |
|- ( ph -> ran ( k e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) ) = ran ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) ) |
14 |
13
|
infeq1d |
|- ( ph -> inf ( ran ( k e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` k ) ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) , RR* , < ) ) |
15 |
6 14
|
eqtrd |
|- ( ph -> ( limsup ` ( j e. Z |-> B ) ) = inf ( ran ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) , RR* , < ) ) |