| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem5.a | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | smflimsuplem5.b | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 3 |  | smflimsuplem5.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smflimsuplem5.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smflimsuplem5.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smflimsuplem5.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smflimsuplem5.e | ⊢ 𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 8 |  | smflimsuplem5.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 9 |  | smflimsuplem5.r | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 10 |  | smflimsuplem5.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 11 |  | smflimsuplem5.x | ⊢ ( 𝜑  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 12 | 4 | eleq2i | ⊢ ( 𝑁  ∈  𝑍  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 14 |  | uzss | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑁  ∈  𝑍  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 16 | 15 4 | sseqtrrdi | ⊢ ( 𝑁  ∈  𝑍  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 17 | 10 16 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 18 | 17 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 20 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 21 | 19 20 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 22 | 7 21 | nfcxfr | ⊢ Ⅎ 𝑥 𝐸 | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 24 | 22 23 | nffv | ⊢ Ⅎ 𝑥 ( 𝐸 ‘ 𝑛 ) | 
						
							| 25 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 26 | 24 25 | mptexf | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 28 | 8 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 29 | 18 27 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 )  =  ( ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑋 ) ) | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐸 ‘ 𝑛 ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑦 sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 35 | 34 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 37 | 36 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 38 | 24 31 32 33 37 | cbvmptf | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑦  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑦  =  𝑋 ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝑦  =  𝑋  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 41 | 40 | mpteq2dva | ⊢ ( 𝑦  =  𝑋  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 42 | 41 | rneqd | ⊢ ( 𝑦  =  𝑋  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 43 | 42 | supeq1d | ⊢ ( 𝑦  =  𝑋  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑦  =  𝑋  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 45 |  | uzss | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 46 |  | iinss1 | ⊢ ( ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑁 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 49 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 50 | 48 49 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 51 |  | nfv | ⊢ Ⅎ 𝑚 𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 52 | 2 51 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 53 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 54 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 55 | 45 | sselda | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 56 | 55 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 57 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 58 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝜑 ) | 
						
							| 59 | 17 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 60 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 61 | 58 59 60 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 62 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 63 | 57 61 62 | smff | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 64 |  | eliin | ⊢ ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) 𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 65 | 11 64 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) 𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 66 | 11 65 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) 𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) 𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 68 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 69 |  | rspa | ⊢ ( ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) 𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 70 | 67 68 69 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 71 | 63 70 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 72 | 54 56 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 73 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 75 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 76 |  | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V | 
						
							| 77 | 76 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 78 | 52 74 75 53 4 72 77 | limsupequzmpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 79 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 80 | 78 79 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 81 | 80 | renepnfd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ≠  +∞ ) | 
						
							| 82 | 52 53 72 81 | limsupubuzmpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ≤  𝑦 ) | 
						
							| 83 |  | uzid2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 84 | 83 | ne0d | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 86 | 52 85 72 | supxrre3rnmpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ≤  𝑦 ) ) | 
						
							| 87 | 82 86 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 88 | 44 50 87 | elrabd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 89 |  | simpl | ⊢ ( ( 𝑦  =  𝑥  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑦  =  𝑥 ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( ( 𝑦  =  𝑥  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 91 | 90 | mpteq2dva | ⊢ ( 𝑦  =  𝑥  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 92 | 91 | rneqd | ⊢ ( 𝑦  =  𝑥  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 93 | 92 | supeq1d | ⊢ ( 𝑦  =  𝑥  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 94 | 93 | eleq1d | ⊢ ( 𝑦  =  𝑥  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 95 | 94 | cbvrabv | ⊢ { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 96 | 88 95 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 97 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 98 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 99 | 98 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 100 | 99 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 101 | 100 | a1i | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 102 | 84 101 | iinexd | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 104 | 97 103 | rabexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 105 | 7 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 106 | 18 104 105 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 107 | 96 106 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑋  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 108 | 38 43 107 87 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ‘ 𝑋 )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 109 | 30 108 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 110 | 1 109 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 111 | 4 | eluzelz2 | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ℤ ) | 
						
							| 112 | 10 111 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 113 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 114 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 115 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 116 | 2 112 3 113 4 114 115 | limsupequzmpt | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 117 | 116 9 | eqeltrd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 118 | 2 112 113 71 117 | supcnvlimsupmpt | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 119 | 110 118 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |