Step |
Hyp |
Ref |
Expression |
1 |
|
supcnvlimsupmpt.j |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
supcnvlimsupmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
supcnvlimsupmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
supcnvlimsupmpt.b |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
5 |
|
supcnvlimsupmpt.r |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑛 ) ) |
7 |
6
|
mpteq1d |
⊢ ( 𝑘 = 𝑛 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) |
8 |
7
|
rneqd |
⊢ ( 𝑘 = 𝑛 → ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) |
9 |
8
|
supeq1d |
⊢ ( 𝑘 = 𝑛 → sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) , ℝ* , < ) ) |
10 |
9
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) = ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) , ℝ* , < ) ) |
11 |
3
|
uzssd3 |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
13 |
12
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) = ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) ) |
15 |
14
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) = ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) ) |
16 |
15
|
supeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) , ℝ* , < ) = sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) |
17 |
16
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) , ℝ* , < ) ) = ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ) |
18 |
10 17
|
syl5eq |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) = ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ) |
19 |
1 4
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
20 |
2 3 19 5
|
supcnvlimsup |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ⇝ ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ) |
21 |
18 20
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ 𝐵 ) , ℝ* , < ) ) ⇝ ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ) |