Step |
Hyp |
Ref |
Expression |
1 |
|
supcnvlimsupmpt.j |
|- F/ j ph |
2 |
|
supcnvlimsupmpt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
supcnvlimsupmpt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
supcnvlimsupmpt.b |
|- ( ( ph /\ j e. Z ) -> B e. RR ) |
5 |
|
supcnvlimsupmpt.r |
|- ( ph -> ( limsup ` ( j e. Z |-> B ) ) e. RR ) |
6 |
|
fveq2 |
|- ( k = n -> ( ZZ>= ` k ) = ( ZZ>= ` n ) ) |
7 |
6
|
mpteq1d |
|- ( k = n -> ( j e. ( ZZ>= ` k ) |-> B ) = ( j e. ( ZZ>= ` n ) |-> B ) ) |
8 |
7
|
rneqd |
|- ( k = n -> ran ( j e. ( ZZ>= ` k ) |-> B ) = ran ( j e. ( ZZ>= ` n ) |-> B ) ) |
9 |
8
|
supeq1d |
|- ( k = n -> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) = sup ( ran ( j e. ( ZZ>= ` n ) |-> B ) , RR* , < ) ) |
10 |
9
|
cbvmptv |
|- ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> B ) , RR* , < ) ) |
11 |
3
|
uzssd3 |
|- ( n e. Z -> ( ZZ>= ` n ) C_ Z ) |
12 |
11
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) C_ Z ) |
13 |
12
|
resmptd |
|- ( ( ph /\ n e. Z ) -> ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) = ( j e. ( ZZ>= ` n ) |-> B ) ) |
14 |
13
|
eqcomd |
|- ( ( ph /\ n e. Z ) -> ( j e. ( ZZ>= ` n ) |-> B ) = ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) ) |
15 |
14
|
rneqd |
|- ( ( ph /\ n e. Z ) -> ran ( j e. ( ZZ>= ` n ) |-> B ) = ran ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) ) |
16 |
15
|
supeq1d |
|- ( ( ph /\ n e. Z ) -> sup ( ran ( j e. ( ZZ>= ` n ) |-> B ) , RR* , < ) = sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) , RR* , < ) ) |
17 |
16
|
mpteq2dva |
|- ( ph -> ( n e. Z |-> sup ( ran ( j e. ( ZZ>= ` n ) |-> B ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
18 |
10 17
|
eqtrid |
|- ( ph -> ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
19 |
1 4
|
fmptd2f |
|- ( ph -> ( j e. Z |-> B ) : Z --> RR ) |
20 |
2 3 19 5
|
supcnvlimsup |
|- ( ph -> ( n e. Z |-> sup ( ran ( ( j e. Z |-> B ) |` ( ZZ>= ` n ) ) , RR* , < ) ) ~~> ( limsup ` ( j e. Z |-> B ) ) ) |
21 |
18 20
|
eqbrtrd |
|- ( ph -> ( k e. Z |-> sup ( ran ( j e. ( ZZ>= ` k ) |-> B ) , RR* , < ) ) ~~> ( limsup ` ( j e. Z |-> B ) ) ) |