| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supcnvlimsup.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
supcnvlimsup.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
supcnvlimsup.f |
|- ( ph -> F : Z --> RR ) |
| 4 |
|
supcnvlimsup.r |
|- ( ph -> ( limsup ` F ) e. RR ) |
| 5 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> F : Z --> RR ) |
| 6 |
|
id |
|- ( n e. Z -> n e. Z ) |
| 7 |
2 6
|
uzssd2 |
|- ( n e. Z -> ( ZZ>= ` n ) C_ Z ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) C_ Z ) |
| 9 |
5 8
|
feqresmpt |
|- ( ( ph /\ n e. Z ) -> ( F |` ( ZZ>= ` n ) ) = ( m e. ( ZZ>= ` n ) |-> ( F ` m ) ) ) |
| 10 |
9
|
rneqd |
|- ( ( ph /\ n e. Z ) -> ran ( F |` ( ZZ>= ` n ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( F ` m ) ) ) |
| 11 |
10
|
supeq1d |
|- ( ( ph /\ n e. Z ) -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( F ` m ) ) , RR* , < ) ) |
| 12 |
|
nfcv |
|- F/_ m F |
| 13 |
4
|
renepnfd |
|- ( ph -> ( limsup ` F ) =/= +oo ) |
| 14 |
12 2 3 13
|
limsupubuz |
|- ( ph -> E. x e. RR A. m e. Z ( F ` m ) <_ x ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ n e. Z ) -> E. x e. RR A. m e. Z ( F ` m ) <_ x ) |
| 16 |
|
ssralv |
|- ( ( ZZ>= ` n ) C_ Z -> ( A. m e. Z ( F ` m ) <_ x -> A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) ) |
| 17 |
7 16
|
syl |
|- ( n e. Z -> ( A. m e. Z ( F ` m ) <_ x -> A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( A. m e. Z ( F ` m ) <_ x -> A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) ) |
| 19 |
18
|
reximdv |
|- ( ( ph /\ n e. Z ) -> ( E. x e. RR A. m e. Z ( F ` m ) <_ x -> E. x e. RR A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) ) |
| 20 |
15 19
|
mpd |
|- ( ( ph /\ n e. Z ) -> E. x e. RR A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) |
| 21 |
|
nfv |
|- F/ m ( ph /\ n e. Z ) |
| 22 |
2
|
eluzelz2 |
|- ( n e. Z -> n e. ZZ ) |
| 23 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
| 24 |
|
ne0i |
|- ( n e. ( ZZ>= ` n ) -> ( ZZ>= ` n ) =/= (/) ) |
| 25 |
22 23 24
|
3syl |
|- ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) =/= (/) ) |
| 27 |
5
|
adantr |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> F : Z --> RR ) |
| 28 |
8
|
sselda |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
| 29 |
27 28
|
ffvelcdmd |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) e. RR ) |
| 30 |
21 26 29
|
supxrre3rnmpt |
|- ( ( ph /\ n e. Z ) -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( F ` m ) ) , RR* , < ) e. RR <-> E. x e. RR A. m e. ( ZZ>= ` n ) ( F ` m ) <_ x ) ) |
| 31 |
20 30
|
mpbird |
|- ( ( ph /\ n e. Z ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( F ` m ) ) , RR* , < ) e. RR ) |
| 32 |
11 31
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) e. RR ) |
| 33 |
32
|
fmpttd |
|- ( ph -> ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) : Z --> RR ) |
| 34 |
|
eqid |
|- ( ZZ>= ` i ) = ( ZZ>= ` i ) |
| 35 |
2
|
eluzelz2 |
|- ( i e. Z -> i e. ZZ ) |
| 36 |
35
|
peano2zd |
|- ( i e. Z -> ( i + 1 ) e. ZZ ) |
| 37 |
35
|
zred |
|- ( i e. Z -> i e. RR ) |
| 38 |
|
lep1 |
|- ( i e. RR -> i <_ ( i + 1 ) ) |
| 39 |
37 38
|
syl |
|- ( i e. Z -> i <_ ( i + 1 ) ) |
| 40 |
34 35 36 39
|
eluzd |
|- ( i e. Z -> ( i + 1 ) e. ( ZZ>= ` i ) ) |
| 41 |
|
uzss |
|- ( ( i + 1 ) e. ( ZZ>= ` i ) -> ( ZZ>= ` ( i + 1 ) ) C_ ( ZZ>= ` i ) ) |
| 42 |
|
ssres2 |
|- ( ( ZZ>= ` ( i + 1 ) ) C_ ( ZZ>= ` i ) -> ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ( F |` ( ZZ>= ` i ) ) ) |
| 43 |
|
rnss |
|- ( ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ( F |` ( ZZ>= ` i ) ) -> ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ran ( F |` ( ZZ>= ` i ) ) ) |
| 44 |
40 41 42 43
|
4syl |
|- ( i e. Z -> ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ran ( F |` ( ZZ>= ` i ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ i e. Z ) -> ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ran ( F |` ( ZZ>= ` i ) ) ) |
| 46 |
|
rnresss |
|- ran ( F |` ( ZZ>= ` i ) ) C_ ran F |
| 47 |
46
|
a1i |
|- ( ( ph /\ i e. Z ) -> ran ( F |` ( ZZ>= ` i ) ) C_ ran F ) |
| 48 |
3
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ i e. Z ) -> ran F C_ RR ) |
| 50 |
47 49
|
sstrd |
|- ( ( ph /\ i e. Z ) -> ran ( F |` ( ZZ>= ` i ) ) C_ RR ) |
| 51 |
|
ressxr |
|- RR C_ RR* |
| 52 |
51
|
a1i |
|- ( ( ph /\ i e. Z ) -> RR C_ RR* ) |
| 53 |
50 52
|
sstrd |
|- ( ( ph /\ i e. Z ) -> ran ( F |` ( ZZ>= ` i ) ) C_ RR* ) |
| 54 |
|
supxrss |
|- ( ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) C_ ran ( F |` ( ZZ>= ` i ) ) /\ ran ( F |` ( ZZ>= ` i ) ) C_ RR* ) -> sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 55 |
45 53 54
|
syl2anc |
|- ( ( ph /\ i e. Z ) -> sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 56 |
|
eqidd |
|- ( i e. Z -> ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
| 57 |
|
fveq2 |
|- ( n = ( i + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( i + 1 ) ) ) |
| 58 |
57
|
reseq2d |
|- ( n = ( i + 1 ) -> ( F |` ( ZZ>= ` n ) ) = ( F |` ( ZZ>= ` ( i + 1 ) ) ) ) |
| 59 |
58
|
rneqd |
|- ( n = ( i + 1 ) -> ran ( F |` ( ZZ>= ` n ) ) = ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) ) |
| 60 |
59
|
supeq1d |
|- ( n = ( i + 1 ) -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) ) |
| 61 |
60
|
adantl |
|- ( ( i e. Z /\ n = ( i + 1 ) ) -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) ) |
| 62 |
2
|
peano2uzs |
|- ( i e. Z -> ( i + 1 ) e. Z ) |
| 63 |
|
xrltso |
|- < Or RR* |
| 64 |
63
|
supex |
|- sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) e. _V |
| 65 |
64
|
a1i |
|- ( i e. Z -> sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) e. _V ) |
| 66 |
56 61 62 65
|
fvmptd |
|- ( i e. Z -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` ( i + 1 ) ) = sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ i e. Z ) -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` ( i + 1 ) ) = sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) ) |
| 68 |
|
fveq2 |
|- ( n = i -> ( ZZ>= ` n ) = ( ZZ>= ` i ) ) |
| 69 |
68
|
reseq2d |
|- ( n = i -> ( F |` ( ZZ>= ` n ) ) = ( F |` ( ZZ>= ` i ) ) ) |
| 70 |
69
|
rneqd |
|- ( n = i -> ran ( F |` ( ZZ>= ` n ) ) = ran ( F |` ( ZZ>= ` i ) ) ) |
| 71 |
70
|
supeq1d |
|- ( n = i -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 72 |
71
|
adantl |
|- ( ( i e. Z /\ n = i ) -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 73 |
|
id |
|- ( i e. Z -> i e. Z ) |
| 74 |
63
|
supex |
|- sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) e. _V |
| 75 |
74
|
a1i |
|- ( i e. Z -> sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) e. _V ) |
| 76 |
56 72 73 75
|
fvmptd |
|- ( i e. Z -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 77 |
76
|
adantl |
|- ( ( ph /\ i e. Z ) -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 78 |
67 77
|
breq12d |
|- ( ( ph /\ i e. Z ) -> ( ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` ( i + 1 ) ) <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) <-> sup ( ran ( F |` ( ZZ>= ` ( i + 1 ) ) ) , RR* , < ) <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 79 |
55 78
|
mpbird |
|- ( ( ph /\ i e. Z ) -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` ( i + 1 ) ) <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) ) |
| 80 |
|
nfcv |
|- F/_ j F |
| 81 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
| 82 |
80 1 2 81
|
limsupre3uz |
|- ( ph -> ( ( limsup ` F ) e. RR <-> ( E. x e. RR A. i e. Z E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) /\ E. x e. RR E. i e. Z A. j e. ( ZZ>= ` i ) ( F ` j ) <_ x ) ) ) |
| 83 |
4 82
|
mpbid |
|- ( ph -> ( E. x e. RR A. i e. Z E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) /\ E. x e. RR E. i e. Z A. j e. ( ZZ>= ` i ) ( F ` j ) <_ x ) ) |
| 84 |
83
|
simpld |
|- ( ph -> E. x e. RR A. i e. Z E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) ) |
| 85 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> x e. RR ) |
| 86 |
85
|
rexrd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> x e. RR* ) |
| 87 |
81
|
3ad2ant1 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> F : Z --> RR* ) |
| 88 |
2
|
uztrn2 |
|- ( ( i e. Z /\ j e. ( ZZ>= ` i ) ) -> j e. Z ) |
| 89 |
88
|
3adant1 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> j e. Z ) |
| 90 |
87 89
|
ffvelcdmd |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( F ` j ) e. RR* ) |
| 91 |
90
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> ( F ` j ) e. RR* ) |
| 92 |
53
|
supxrcld |
|- ( ( ph /\ i e. Z ) -> sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) e. RR* ) |
| 93 |
92
|
ad5ant13 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) e. RR* ) |
| 94 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> x <_ ( F ` j ) ) |
| 95 |
53
|
3adant3 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ran ( F |` ( ZZ>= ` i ) ) C_ RR* ) |
| 96 |
|
fvres |
|- ( j e. ( ZZ>= ` i ) -> ( ( F |` ( ZZ>= ` i ) ) ` j ) = ( F ` j ) ) |
| 97 |
96
|
eqcomd |
|- ( j e. ( ZZ>= ` i ) -> ( F ` j ) = ( ( F |` ( ZZ>= ` i ) ) ` j ) ) |
| 98 |
97
|
3ad2ant3 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( F ` j ) = ( ( F |` ( ZZ>= ` i ) ) ` j ) ) |
| 99 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ i e. Z ) -> F Fn Z ) |
| 101 |
2 73
|
uzssd2 |
|- ( i e. Z -> ( ZZ>= ` i ) C_ Z ) |
| 102 |
101
|
adantl |
|- ( ( ph /\ i e. Z ) -> ( ZZ>= ` i ) C_ Z ) |
| 103 |
|
fnssres |
|- ( ( F Fn Z /\ ( ZZ>= ` i ) C_ Z ) -> ( F |` ( ZZ>= ` i ) ) Fn ( ZZ>= ` i ) ) |
| 104 |
100 102 103
|
syl2anc |
|- ( ( ph /\ i e. Z ) -> ( F |` ( ZZ>= ` i ) ) Fn ( ZZ>= ` i ) ) |
| 105 |
104
|
3adant3 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( F |` ( ZZ>= ` i ) ) Fn ( ZZ>= ` i ) ) |
| 106 |
|
simp3 |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> j e. ( ZZ>= ` i ) ) |
| 107 |
|
fnfvelrn |
|- ( ( ( F |` ( ZZ>= ` i ) ) Fn ( ZZ>= ` i ) /\ j e. ( ZZ>= ` i ) ) -> ( ( F |` ( ZZ>= ` i ) ) ` j ) e. ran ( F |` ( ZZ>= ` i ) ) ) |
| 108 |
105 106 107
|
syl2anc |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( ( F |` ( ZZ>= ` i ) ) ` j ) e. ran ( F |` ( ZZ>= ` i ) ) ) |
| 109 |
98 108
|
eqeltrd |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( F ` j ) e. ran ( F |` ( ZZ>= ` i ) ) ) |
| 110 |
|
eqid |
|- sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) |
| 111 |
95 109 110
|
supxrubd |
|- ( ( ph /\ i e. Z /\ j e. ( ZZ>= ` i ) ) -> ( F ` j ) <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 112 |
111
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> ( F ` j ) <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 113 |
86 91 93 94 112
|
xrletrd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ i e. Z ) /\ j e. ( ZZ>= ` i ) ) /\ x <_ ( F ` j ) ) -> x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 114 |
113
|
rexlimdva2 |
|- ( ( ( ph /\ x e. RR ) /\ i e. Z ) -> ( E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) -> x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 115 |
114
|
ralimdva |
|- ( ( ph /\ x e. RR ) -> ( A. i e. Z E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) -> A. i e. Z x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 116 |
115
|
reximdva |
|- ( ph -> ( E. x e. RR A. i e. Z E. j e. ( ZZ>= ` i ) x <_ ( F ` j ) -> E. x e. RR A. i e. Z x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 117 |
84 116
|
mpd |
|- ( ph -> E. x e. RR A. i e. Z x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 118 |
|
simpl |
|- ( ( y = x /\ i e. Z ) -> y = x ) |
| 119 |
76
|
adantl |
|- ( ( y = x /\ i e. Z ) -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) = sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 120 |
118 119
|
breq12d |
|- ( ( y = x /\ i e. Z ) -> ( y <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) <-> x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 121 |
120
|
ralbidva |
|- ( y = x -> ( A. i e. Z y <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) <-> A. i e. Z x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) ) |
| 122 |
121
|
cbvrexvw |
|- ( E. y e. RR A. i e. Z y <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) <-> E. x e. RR A. i e. Z x <_ sup ( ran ( F |` ( ZZ>= ` i ) ) , RR* , < ) ) |
| 123 |
117 122
|
sylibr |
|- ( ph -> E. y e. RR A. i e. Z y <_ ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ` i ) ) |
| 124 |
2 1 33 79 123
|
climinf |
|- ( ph -> ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ~~> inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR , < ) ) |
| 125 |
|
fveq2 |
|- ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) |
| 126 |
125
|
reseq2d |
|- ( n = k -> ( F |` ( ZZ>= ` n ) ) = ( F |` ( ZZ>= ` k ) ) ) |
| 127 |
126
|
rneqd |
|- ( n = k -> ran ( F |` ( ZZ>= ` n ) ) = ran ( F |` ( ZZ>= ` k ) ) ) |
| 128 |
127
|
supeq1d |
|- ( n = k -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) |
| 129 |
128
|
cbvmptv |
|- ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) = ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) |
| 130 |
129
|
a1i |
|- ( ph -> ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) = ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) ) |
| 131 |
1 2 3 4
|
limsupvaluz2 |
|- ( ph -> ( limsup ` F ) = inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR , < ) ) |
| 132 |
131
|
eqcomd |
|- ( ph -> inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR , < ) = ( limsup ` F ) ) |
| 133 |
130 132
|
breq12d |
|- ( ph -> ( ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ~~> inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR , < ) <-> ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) ~~> ( limsup ` F ) ) ) |
| 134 |
124 133
|
mpbid |
|- ( ph -> ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) ~~> ( limsup ` F ) ) |