| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supcnvlimsup.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
supcnvlimsup.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
supcnvlimsup.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 4 |
|
supcnvlimsup.r |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 6 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
| 7 |
2 6
|
uzssd2 |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 9 |
5 8
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 10 |
9
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
| 11 |
10
|
supeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ) |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐹 |
| 13 |
4
|
renepnfd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
| 14 |
12 2 3 13
|
limsupubuz |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
| 16 |
|
ssralv |
⊢ ( ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 17 |
7 16
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 19 |
18
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 20 |
15 19
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
| 21 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 22 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 23 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 24 |
|
ne0i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 25 |
22 23 24
|
3syl |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 27 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 28 |
8
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 29 |
27 28
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 30 |
21 26 29
|
supxrre3rnmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 31 |
20 30
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ∈ ℝ ) |
| 32 |
11 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ∈ ℝ ) |
| 33 |
32
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) : 𝑍 ⟶ ℝ ) |
| 34 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑖 ) |
| 35 |
2
|
eluzelz2 |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℤ ) |
| 36 |
35
|
peano2zd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ ℤ ) |
| 37 |
35
|
zred |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ ) |
| 38 |
|
lep1 |
⊢ ( 𝑖 ∈ ℝ → 𝑖 ≤ ( 𝑖 + 1 ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ≤ ( 𝑖 + 1 ) ) |
| 40 |
34 35 36 39
|
eluzd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 41 |
|
uzss |
⊢ ( ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) ) |
| 42 |
|
ssres2 |
⊢ ( ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) → ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 43 |
|
rnss |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 44 |
40 41 42 43
|
4syl |
⊢ ( 𝑖 ∈ 𝑍 → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 46 |
|
rnresss |
⊢ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ran 𝐹 |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ran 𝐹 ) |
| 48 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran 𝐹 ⊆ ℝ ) |
| 50 |
47 49
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ ) |
| 51 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ℝ ⊆ ℝ* ) |
| 53 |
50 52
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) |
| 54 |
|
supxrss |
⊢ ( ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ∧ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 55 |
45 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 56 |
|
eqidd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
| 58 |
57
|
reseq2d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ) |
| 59 |
58
|
rneqd |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ) |
| 60 |
59
|
supeq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 = ( 𝑖 + 1 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
| 62 |
2
|
peano2uzs |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ 𝑍 ) |
| 63 |
|
xrltso |
⊢ < Or ℝ* |
| 64 |
63
|
supex |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ∈ V |
| 65 |
64
|
a1i |
⊢ ( 𝑖 ∈ 𝑍 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ∈ V ) |
| 66 |
56 61 62 65
|
fvmptd |
⊢ ( 𝑖 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑖 ) ) |
| 69 |
68
|
reseq2d |
⊢ ( 𝑛 = 𝑖 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 70 |
69
|
rneqd |
⊢ ( 𝑛 = 𝑖 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 71 |
70
|
supeq1d |
⊢ ( 𝑛 = 𝑖 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 = 𝑖 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 73 |
|
id |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ 𝑍 ) |
| 74 |
63
|
supex |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ V |
| 75 |
74
|
a1i |
⊢ ( 𝑖 ∈ 𝑍 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ V ) |
| 76 |
56 72 73 75
|
fvmptd |
⊢ ( 𝑖 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 78 |
67 77
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 79 |
55 78
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ) |
| 80 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
| 81 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 82 |
80 1 2 81
|
limsupre3uz |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 83 |
4 82
|
mpbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 84 |
83
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 85 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
| 86 |
85
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ* ) |
| 87 |
81
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 88 |
2
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
| 89 |
88
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
| 90 |
87 89
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 91 |
90
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 92 |
53
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 93 |
92
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 94 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 95 |
53
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) |
| 96 |
|
fvres |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 97 |
96
|
eqcomd |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ) |
| 98 |
97
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ) |
| 99 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐹 Fn 𝑍 ) |
| 101 |
2 73
|
uzssd2 |
⊢ ( 𝑖 ∈ 𝑍 → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 103 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝑍 ∧ ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 104 |
100 102 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 105 |
104
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
| 106 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 107 |
|
fnfvelrn |
⊢ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 108 |
105 106 107
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 109 |
98 108
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
| 110 |
|
eqid |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) |
| 111 |
95 109 110
|
supxrubd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 112 |
111
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 113 |
86 91 93 94 112
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 114 |
113
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 115 |
114
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 116 |
115
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 117 |
84 116
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 118 |
|
simpl |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → 𝑦 = 𝑥 ) |
| 119 |
76
|
adantl |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 120 |
118 119
|
breq12d |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 121 |
120
|
ralbidva |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
| 122 |
121
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
| 123 |
117 122
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ) |
| 124 |
2 1 33 79 123
|
climinf |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ) |
| 125 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 126 |
125
|
reseq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 127 |
126
|
rneqd |
⊢ ( 𝑛 = 𝑘 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 128 |
127
|
supeq1d |
⊢ ( 𝑛 = 𝑘 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) |
| 129 |
128
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) |
| 130 |
129
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ) |
| 131 |
1 2 3 4
|
limsupvaluz2 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ) |
| 132 |
131
|
eqcomd |
⊢ ( 𝜑 → inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) = ( lim sup ‘ 𝐹 ) ) |
| 133 |
130 132
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ↔ ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ⇝ ( lim sup ‘ 𝐹 ) ) ) |
| 134 |
124 133
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ⇝ ( lim sup ‘ 𝐹 ) ) |