Step |
Hyp |
Ref |
Expression |
1 |
|
supcnvlimsup.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
supcnvlimsup.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
supcnvlimsup.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
supcnvlimsup.r |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ ) |
6 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
7 |
2 6
|
uzssd2 |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
9 |
5 8
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
10 |
9
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) ) |
11 |
10
|
supeq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐹 |
13 |
4
|
renepnfd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
14 |
12 2 3 13
|
limsupubuz |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
16 |
|
ssralv |
⊢ ( ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
17 |
7 16
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
19 |
18
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
20 |
15 19
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) |
21 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
22 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
23 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
24 |
|
ne0i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
27 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
28 |
8
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
29 |
27 28
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
30 |
21 26 29
|
supxrre3rnmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑥 ) ) |
31 |
20 30
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( 𝐹 ‘ 𝑚 ) ) , ℝ* , < ) ∈ ℝ ) |
32 |
11 31
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ∈ ℝ ) |
33 |
32
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) : 𝑍 ⟶ ℝ ) |
34 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑖 ) |
35 |
2
|
eluzelz2 |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℤ ) |
36 |
35
|
peano2zd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ ℤ ) |
37 |
35
|
zred |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ ) |
38 |
|
lep1 |
⊢ ( 𝑖 ∈ ℝ → 𝑖 ≤ ( 𝑖 + 1 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ≤ ( 𝑖 + 1 ) ) |
40 |
34 35 36 39
|
eluzd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
41 |
|
uzss |
⊢ ( ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) ) |
42 |
40 41
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) ) |
43 |
|
ssres2 |
⊢ ( ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑖 ) → ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
44 |
42 43
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
45 |
|
rnss |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
48 |
|
rnresss |
⊢ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ran 𝐹 |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ran 𝐹 ) |
50 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran 𝐹 ⊆ ℝ ) |
52 |
49 51
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ ) |
53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ℝ ⊆ ℝ* ) |
55 |
52 54
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) |
56 |
|
supxrss |
⊢ ( ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ⊆ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ∧ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
57 |
47 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
58 |
|
eqidd |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
60 |
59
|
reseq2d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ) |
61 |
60
|
rneqd |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) ) |
62 |
61
|
supeq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 = ( 𝑖 + 1 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
64 |
2
|
peano2uzs |
⊢ ( 𝑖 ∈ 𝑍 → ( 𝑖 + 1 ) ∈ 𝑍 ) |
65 |
|
xrltso |
⊢ < Or ℝ* |
66 |
65
|
supex |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ∈ V |
67 |
66
|
a1i |
⊢ ( 𝑖 ∈ 𝑍 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ∈ V ) |
68 |
58 63 64 67
|
fvmptd |
⊢ ( 𝑖 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ) |
70 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑖 ) ) |
71 |
70
|
reseq2d |
⊢ ( 𝑛 = 𝑖 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
72 |
71
|
rneqd |
⊢ ( 𝑛 = 𝑖 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
73 |
72
|
supeq1d |
⊢ ( 𝑛 = 𝑖 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
74 |
73
|
adantl |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑛 = 𝑖 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
75 |
|
id |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ 𝑍 ) |
76 |
65
|
supex |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ V |
77 |
76
|
a1i |
⊢ ( 𝑖 ∈ 𝑍 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ V ) |
78 |
58 74 75 77
|
fvmptd |
⊢ ( 𝑖 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
80 |
69 79
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) , ℝ* , < ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
81 |
57 80
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ ( 𝑖 + 1 ) ) ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
83 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
84 |
82 1 2 83
|
limsupre3uz |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
85 |
4 84
|
mpbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
86 |
85
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
87 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
88 |
87
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ∈ ℝ* ) |
89 |
83
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
90 |
2
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
91 |
90
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
92 |
89 91
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
93 |
92
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
94 |
55
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ ℝ* ) |
95 |
94
|
ad5ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ∈ ℝ* ) |
96 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
97 |
55
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ⊆ ℝ* ) |
98 |
|
fvres |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
99 |
98
|
eqcomd |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ) |
100 |
99
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ) |
101 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐹 Fn 𝑍 ) |
103 |
2 75
|
uzssd2 |
⊢ ( 𝑖 ∈ 𝑍 → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
104 |
103
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
105 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝑍 ∧ ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
106 |
102 104 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
107 |
106
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ) |
108 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
109 |
|
fnfvelrn |
⊢ ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) Fn ( ℤ≥ ‘ 𝑖 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
110 |
107 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
111 |
100 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) ) |
112 |
|
eqid |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) |
113 |
97 111 112
|
supxrubd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
114 |
113
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
115 |
88 93 95 96 114
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
116 |
115
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
117 |
116
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
118 |
117
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
119 |
86 118
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
120 |
|
simpl |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → 𝑦 = 𝑥 ) |
121 |
78
|
adantl |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
122 |
120 121
|
breq12d |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
123 |
122
|
ralbidva |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) ) |
124 |
123
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑖 ) ) , ℝ* , < ) ) |
125 |
119 124
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 𝑦 ≤ ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ‘ 𝑖 ) ) |
126 |
2 1 33 81 125
|
climinf |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ) |
127 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑘 ) ) |
128 |
127
|
reseq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
129 |
128
|
rneqd |
⊢ ( 𝑛 = 𝑘 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
130 |
129
|
supeq1d |
⊢ ( 𝑛 = 𝑘 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) |
131 |
130
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) |
132 |
131
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ) |
133 |
1 2 3 4
|
limsupvaluz2 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ) |
134 |
133
|
eqcomd |
⊢ ( 𝜑 → inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) = ( lim sup ‘ 𝐹 ) ) |
135 |
132 134
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) ⇝ inf ( ran ( 𝑛 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) ↔ ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ⇝ ( lim sup ‘ 𝐹 ) ) ) |
136 |
126 135
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) , ℝ* , < ) ) ⇝ ( lim sup ‘ 𝐹 ) ) |