Metamath Proof Explorer


Theorem smflimsuplem6

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem6.a 𝑛 𝜑
smflimsuplem6.b 𝑚 𝜑
smflimsuplem6.m ( 𝜑𝑀 ∈ ℤ )
smflimsuplem6.z 𝑍 = ( ℤ𝑀 )
smflimsuplem6.s ( 𝜑𝑆 ∈ SAlg )
smflimsuplem6.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimsuplem6.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
smflimsuplem6.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
smflimsuplem6.r ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ )
smflimsuplem6.n ( 𝜑𝑁𝑍 )
smflimsuplem6.x ( 𝜑𝑋 𝑚 ∈ ( ℤ𝑁 ) dom ( 𝐹𝑚 ) )
Assertion smflimsuplem6 ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ∈ dom ⇝ )

Proof

Step Hyp Ref Expression
1 smflimsuplem6.a 𝑛 𝜑
2 smflimsuplem6.b 𝑚 𝜑
3 smflimsuplem6.m ( 𝜑𝑀 ∈ ℤ )
4 smflimsuplem6.z 𝑍 = ( ℤ𝑀 )
5 smflimsuplem6.s ( 𝜑𝑆 ∈ SAlg )
6 smflimsuplem6.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smflimsuplem6.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
8 smflimsuplem6.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
9 smflimsuplem6.r ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ )
10 smflimsuplem6.n ( 𝜑𝑁𝑍 )
11 smflimsuplem6.x ( 𝜑𝑋 𝑚 ∈ ( ℤ𝑁 ) dom ( 𝐹𝑚 ) )
12 4 fvexi 𝑍 ∈ V
13 12 a1i ( 𝜑𝑍 ∈ V )
14 13 mptexd ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ∈ V )
15 fvexd ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ V )
16 1 2 3 4 5 6 7 8 9 10 11 smflimsuplem5 ( 𝜑 → ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
17 fvexd ( 𝜑 → ( ℤ𝑁 ) ∈ V )
18 4 eluzelz2 ( 𝑁𝑍𝑁 ∈ ℤ )
19 10 18 syl ( 𝜑𝑁 ∈ ℤ )
20 eqid ( ℤ𝑁 ) = ( ℤ𝑁 )
21 4 eleq2i ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
22 21 biimpi ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
23 uzss ( 𝑁 ∈ ( ℤ𝑀 ) → ( ℤ𝑁 ) ⊆ ( ℤ𝑀 ) )
24 22 23 syl ( 𝑁𝑍 → ( ℤ𝑁 ) ⊆ ( ℤ𝑀 ) )
25 24 4 sseqtrrdi ( 𝑁𝑍 → ( ℤ𝑁 ) ⊆ 𝑍 )
26 10 25 syl ( 𝜑 → ( ℤ𝑁 ) ⊆ 𝑍 )
27 ssid ( ℤ𝑁 ) ⊆ ( ℤ𝑁 )
28 27 a1i ( 𝜑 → ( ℤ𝑁 ) ⊆ ( ℤ𝑁 ) )
29 fvexd ( ( 𝜑𝑛 ∈ ( ℤ𝑁 ) ) → ( ( 𝐻𝑛 ) ‘ 𝑋 ) ∈ V )
30 1 13 17 19 20 26 28 29 climeqmpt ( 𝜑 → ( ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ↔ ( 𝑛 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ) )
31 16 30 mpbird ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
32 breldmg ( ( ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ∈ V ∧ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ V ∧ ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑁 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ) → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ∈ dom ⇝ )
33 14 15 31 32 syl3anc ( 𝜑 → ( 𝑛𝑍 ↦ ( ( 𝐻𝑛 ) ‘ 𝑋 ) ) ∈ dom ⇝ )