Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem6.a |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
smflimsuplem6.b |
⊢ Ⅎ 𝑚 𝜑 |
3 |
|
smflimsuplem6.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
smflimsuplem6.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
smflimsuplem6.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
6 |
|
smflimsuplem6.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smflimsuplem6.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
8 |
|
smflimsuplem6.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
9 |
|
smflimsuplem6.r |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ ) |
10 |
|
smflimsuplem6.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
11 |
|
smflimsuplem6.x |
⊢ ( 𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) dom ( 𝐹 ‘ 𝑚 ) ) |
12 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
14 |
13
|
mptexd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ∈ V ) |
15 |
|
fvexd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ V ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
smflimsuplem5 |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
17 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ∈ V ) |
18 |
4
|
eluzelz2 |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
20 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
21 |
4
|
eleq2i |
⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
22 |
21
|
biimpi |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
23 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑁 ∈ 𝑍 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
25 |
24 4
|
sseqtrrdi |
⊢ ( 𝑁 ∈ 𝑍 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
26 |
10 25
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
27 |
|
ssid |
⊢ ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑁 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
29 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ∈ V ) |
30 |
1 13 17 19 20 26 28 29
|
climeqmpt |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) ) |
31 |
16 30
|
mpbird |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
32 |
|
breldmg |
⊢ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ∈ V ∧ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ V ∧ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |
33 |
14 15 31 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |