| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem6.a | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 2 |  | smflimsuplem6.b | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 3 |  | smflimsuplem6.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smflimsuplem6.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smflimsuplem6.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smflimsuplem6.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smflimsuplem6.e | ⊢ 𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 8 |  | smflimsuplem6.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 9 |  | smflimsuplem6.r | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 10 |  | smflimsuplem6.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 11 |  | smflimsuplem6.x | ⊢ ( 𝜑  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑁 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 12 | 4 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 14 | 13 | mptexd | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ∈  V ) | 
						
							| 15 |  | fvexd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  V ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 | smflimsuplem5 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 17 |  | fvexd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ∈  V ) | 
						
							| 18 | 4 | eluzelz2 | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 10 18 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 21 | 4 | eleq2i | ⊢ ( 𝑁  ∈  𝑍  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑁  ∈  𝑍  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 23 |  | uzss | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑁  ∈  𝑍  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 25 | 24 4 | sseqtrrdi | ⊢ ( 𝑁  ∈  𝑍  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 26 | 10 25 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  𝑍 ) | 
						
							| 27 |  | ssid | ⊢ ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 29 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 30 | 1 13 17 19 20 26 28 29 | climeqmpt | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) ) | 
						
							| 31 | 16 30 | mpbird | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 32 |  | breldmg | ⊢ ( ( ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ∈  V  ∧  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  V  ∧  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑁 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) )  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ∈  dom   ⇝  ) | 
						
							| 33 | 14 15 31 32 | syl3anc | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑛 ) ‘ 𝑋 ) )  ∈  dom   ⇝  ) |