Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem6.a |
|- F/ n ph |
2 |
|
smflimsuplem6.b |
|- F/ m ph |
3 |
|
smflimsuplem6.m |
|- ( ph -> M e. ZZ ) |
4 |
|
smflimsuplem6.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
smflimsuplem6.s |
|- ( ph -> S e. SAlg ) |
6 |
|
smflimsuplem6.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
7 |
|
smflimsuplem6.e |
|- E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
8 |
|
smflimsuplem6.h |
|- H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
9 |
|
smflimsuplem6.r |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) |
10 |
|
smflimsuplem6.n |
|- ( ph -> N e. Z ) |
11 |
|
smflimsuplem6.x |
|- ( ph -> X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) ) |
12 |
4
|
fvexi |
|- Z e. _V |
13 |
12
|
a1i |
|- ( ph -> Z e. _V ) |
14 |
13
|
mptexd |
|- ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. _V ) |
15 |
|
fvexd |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) e. _V ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
smflimsuplem5 |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) |
17 |
|
fvexd |
|- ( ph -> ( ZZ>= ` N ) e. _V ) |
18 |
4
|
eluzelz2 |
|- ( N e. Z -> N e. ZZ ) |
19 |
10 18
|
syl |
|- ( ph -> N e. ZZ ) |
20 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
21 |
4
|
eleq2i |
|- ( N e. Z <-> N e. ( ZZ>= ` M ) ) |
22 |
21
|
biimpi |
|- ( N e. Z -> N e. ( ZZ>= ` M ) ) |
23 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
24 |
22 23
|
syl |
|- ( N e. Z -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
25 |
24 4
|
sseqtrrdi |
|- ( N e. Z -> ( ZZ>= ` N ) C_ Z ) |
26 |
10 25
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
27 |
|
ssid |
|- ( ZZ>= ` N ) C_ ( ZZ>= ` N ) |
28 |
27
|
a1i |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` N ) ) |
29 |
|
fvexd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` X ) e. _V ) |
30 |
1 13 17 19 20 26 28 29
|
climeqmpt |
|- ( ph -> ( ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) <-> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) ) |
31 |
16 30
|
mpbird |
|- ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) |
32 |
|
breldmg |
|- ( ( ( n e. Z |-> ( ( H ` n ) ` X ) ) e. _V /\ ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) e. _V /\ ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. dom ~~> ) |
33 |
14 15 31 32
|
syl3anc |
|- ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. dom ~~> ) |