| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem6.a |  |-  F/ n ph | 
						
							| 2 |  | smflimsuplem6.b |  |-  F/ m ph | 
						
							| 3 |  | smflimsuplem6.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smflimsuplem6.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smflimsuplem6.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smflimsuplem6.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smflimsuplem6.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 8 |  | smflimsuplem6.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 9 |  | smflimsuplem6.r |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 10 |  | smflimsuplem6.n |  |-  ( ph -> N e. Z ) | 
						
							| 11 |  | smflimsuplem6.x |  |-  ( ph -> X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) ) | 
						
							| 12 | 4 | fvexi |  |-  Z e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 14 | 13 | mptexd |  |-  ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. _V ) | 
						
							| 15 |  | fvexd |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) e. _V ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 | smflimsuplem5 |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 17 |  | fvexd |  |-  ( ph -> ( ZZ>= ` N ) e. _V ) | 
						
							| 18 | 4 | eluzelz2 |  |-  ( N e. Z -> N e. ZZ ) | 
						
							| 19 | 10 18 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 20 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 21 | 4 | eleq2i |  |-  ( N e. Z <-> N e. ( ZZ>= ` M ) ) | 
						
							| 22 | 21 | biimpi |  |-  ( N e. Z -> N e. ( ZZ>= ` M ) ) | 
						
							| 23 |  | uzss |  |-  ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( N e. Z -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) | 
						
							| 25 | 24 4 | sseqtrrdi |  |-  ( N e. Z -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 26 | 10 25 | syl |  |-  ( ph -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 27 |  | ssid |  |-  ( ZZ>= ` N ) C_ ( ZZ>= ` N ) | 
						
							| 28 | 27 | a1i |  |-  ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` N ) ) | 
						
							| 29 |  | fvexd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` X ) e. _V ) | 
						
							| 30 | 1 13 17 19 20 26 28 29 | climeqmpt |  |-  ( ph -> ( ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) <-> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) ) | 
						
							| 31 | 16 30 | mpbird |  |-  ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 32 |  | breldmg |  |-  ( ( ( n e. Z |-> ( ( H ` n ) ` X ) ) e. _V /\ ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) e. _V /\ ( n e. Z |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. dom ~~> ) | 
						
							| 33 | 14 15 31 32 | syl3anc |  |-  ( ph -> ( n e. Z |-> ( ( H ` n ) ` X ) ) e. dom ~~> ) |