Metamath Proof Explorer


Theorem climeqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqmpt.x
|- F/ x ph
climeqmpt.a
|- ( ph -> A e. V )
climeqmpt.b
|- ( ph -> B e. W )
climeqmpt.m
|- ( ph -> M e. ZZ )
climeqmpt.z
|- Z = ( ZZ>= ` M )
climeqmpt.s
|- ( ph -> Z C_ A )
climeqmpt.t
|- ( ph -> Z C_ B )
climeqmpt.c
|- ( ( ph /\ x e. Z ) -> C e. U )
Assertion climeqmpt
|- ( ph -> ( ( x e. A |-> C ) ~~> D <-> ( x e. B |-> C ) ~~> D ) )

Proof

Step Hyp Ref Expression
1 climeqmpt.x
 |-  F/ x ph
2 climeqmpt.a
 |-  ( ph -> A e. V )
3 climeqmpt.b
 |-  ( ph -> B e. W )
4 climeqmpt.m
 |-  ( ph -> M e. ZZ )
5 climeqmpt.z
 |-  Z = ( ZZ>= ` M )
6 climeqmpt.s
 |-  ( ph -> Z C_ A )
7 climeqmpt.t
 |-  ( ph -> Z C_ B )
8 climeqmpt.c
 |-  ( ( ph /\ x e. Z ) -> C e. U )
9 nfmpt1
 |-  F/_ x ( x e. A |-> C )
10 nfmpt1
 |-  F/_ x ( x e. B |-> C )
11 2 mptexd
 |-  ( ph -> ( x e. A |-> C ) e. _V )
12 3 mptexd
 |-  ( ph -> ( x e. B |-> C ) e. _V )
13 6 adantr
 |-  ( ( ph /\ x e. Z ) -> Z C_ A )
14 simpr
 |-  ( ( ph /\ x e. Z ) -> x e. Z )
15 13 14 sseldd
 |-  ( ( ph /\ x e. Z ) -> x e. A )
16 eqid
 |-  ( x e. A |-> C ) = ( x e. A |-> C )
17 16 fvmpt2
 |-  ( ( x e. A /\ C e. U ) -> ( ( x e. A |-> C ) ` x ) = C )
18 15 8 17 syl2anc
 |-  ( ( ph /\ x e. Z ) -> ( ( x e. A |-> C ) ` x ) = C )
19 7 adantr
 |-  ( ( ph /\ x e. Z ) -> Z C_ B )
20 19 14 sseldd
 |-  ( ( ph /\ x e. Z ) -> x e. B )
21 eqid
 |-  ( x e. B |-> C ) = ( x e. B |-> C )
22 21 fvmpt2
 |-  ( ( x e. B /\ C e. U ) -> ( ( x e. B |-> C ) ` x ) = C )
23 20 8 22 syl2anc
 |-  ( ( ph /\ x e. Z ) -> ( ( x e. B |-> C ) ` x ) = C )
24 23 eqcomd
 |-  ( ( ph /\ x e. Z ) -> C = ( ( x e. B |-> C ) ` x ) )
25 18 24 eqtrd
 |-  ( ( ph /\ x e. Z ) -> ( ( x e. A |-> C ) ` x ) = ( ( x e. B |-> C ) ` x ) )
26 1 9 10 4 5 11 12 25 climeqf
 |-  ( ph -> ( ( x e. A |-> C ) ~~> D <-> ( x e. B |-> C ) ~~> D ) )