| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeqmpt.x |
|- F/ x ph |
| 2 |
|
climeqmpt.a |
|- ( ph -> A e. V ) |
| 3 |
|
climeqmpt.b |
|- ( ph -> B e. W ) |
| 4 |
|
climeqmpt.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
climeqmpt.z |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
climeqmpt.s |
|- ( ph -> Z C_ A ) |
| 7 |
|
climeqmpt.t |
|- ( ph -> Z C_ B ) |
| 8 |
|
climeqmpt.c |
|- ( ( ph /\ x e. Z ) -> C e. U ) |
| 9 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> C ) |
| 10 |
|
nfmpt1 |
|- F/_ x ( x e. B |-> C ) |
| 11 |
2
|
mptexd |
|- ( ph -> ( x e. A |-> C ) e. _V ) |
| 12 |
3
|
mptexd |
|- ( ph -> ( x e. B |-> C ) e. _V ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ x e. Z ) -> Z C_ A ) |
| 14 |
|
simpr |
|- ( ( ph /\ x e. Z ) -> x e. Z ) |
| 15 |
13 14
|
sseldd |
|- ( ( ph /\ x e. Z ) -> x e. A ) |
| 16 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
| 17 |
16
|
fvmpt2 |
|- ( ( x e. A /\ C e. U ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 18 |
15 8 17
|
syl2anc |
|- ( ( ph /\ x e. Z ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 19 |
7
|
adantr |
|- ( ( ph /\ x e. Z ) -> Z C_ B ) |
| 20 |
19 14
|
sseldd |
|- ( ( ph /\ x e. Z ) -> x e. B ) |
| 21 |
|
eqid |
|- ( x e. B |-> C ) = ( x e. B |-> C ) |
| 22 |
21
|
fvmpt2 |
|- ( ( x e. B /\ C e. U ) -> ( ( x e. B |-> C ) ` x ) = C ) |
| 23 |
20 8 22
|
syl2anc |
|- ( ( ph /\ x e. Z ) -> ( ( x e. B |-> C ) ` x ) = C ) |
| 24 |
23
|
eqcomd |
|- ( ( ph /\ x e. Z ) -> C = ( ( x e. B |-> C ) ` x ) ) |
| 25 |
18 24
|
eqtrd |
|- ( ( ph /\ x e. Z ) -> ( ( x e. A |-> C ) ` x ) = ( ( x e. B |-> C ) ` x ) ) |
| 26 |
1 9 10 4 5 11 12 25
|
climeqf |
|- ( ph -> ( ( x e. A |-> C ) ~~> D <-> ( x e. B |-> C ) ~~> D ) ) |