Step |
Hyp |
Ref |
Expression |
1 |
|
climeqmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
climeqmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
climeqmpt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
climeqmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
climeqmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
climeqmpt.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
7 |
|
climeqmpt.t |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐵 ) |
8 |
|
climeqmpt.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐶 ∈ 𝑈 ) |
9 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
11 |
2
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
12 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝑍 ) |
15 |
13 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝐴 ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
17 |
16
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
18 |
15 8 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑍 ⊆ 𝐵 ) |
20 |
19 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝐵 ) |
21 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
22 |
21
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
23 |
20 8 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
24 |
23
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐶 = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) ) |
25 |
18 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) ) |
26 |
1 9 10 4 5 11 12 25
|
climeqf |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝ 𝐷 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⇝ 𝐷 ) ) |