| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeqmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
climeqmpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
climeqmpt.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 4 |
|
climeqmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
climeqmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
climeqmpt.s |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
| 7 |
|
climeqmpt.t |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐵 ) |
| 8 |
|
climeqmpt.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐶 ∈ 𝑈 ) |
| 9 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
| 11 |
2
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ V ) |
| 12 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝑍 ) |
| 15 |
13 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝐴 ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 17 |
16
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 18 |
15 8 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑍 ⊆ 𝐵 ) |
| 20 |
19 14
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
| 22 |
21
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 23 |
20 8 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 24 |
23
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐶 = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 25 |
18 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 26 |
1 9 10 4 5 11 12 25
|
climeqf |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝ 𝐷 ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⇝ 𝐷 ) ) |