Metamath Proof Explorer


Theorem climeqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqmpt.x xφ
climeqmpt.a φAV
climeqmpt.b φBW
climeqmpt.m φM
climeqmpt.z Z=M
climeqmpt.s φZA
climeqmpt.t φZB
climeqmpt.c φxZCU
Assertion climeqmpt φxACDxBCD

Proof

Step Hyp Ref Expression
1 climeqmpt.x xφ
2 climeqmpt.a φAV
3 climeqmpt.b φBW
4 climeqmpt.m φM
5 climeqmpt.z Z=M
6 climeqmpt.s φZA
7 climeqmpt.t φZB
8 climeqmpt.c φxZCU
9 nfmpt1 _xxAC
10 nfmpt1 _xxBC
11 2 mptexd φxACV
12 3 mptexd φxBCV
13 6 adantr φxZZA
14 simpr φxZxZ
15 13 14 sseldd φxZxA
16 eqid xAC=xAC
17 16 fvmpt2 xACUxACx=C
18 15 8 17 syl2anc φxZxACx=C
19 7 adantr φxZZB
20 19 14 sseldd φxZxB
21 eqid xBC=xBC
22 21 fvmpt2 xBCUxBCx=C
23 20 8 22 syl2anc φxZxBCx=C
24 23 eqcomd φxZC=xBCx
25 18 24 eqtrd φxZxACx=xBCx
26 1 9 10 4 5 11 12 25 climeqf φxACDxBCD