Metamath Proof Explorer


Theorem climeqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqmpt.x x φ
climeqmpt.a φ A V
climeqmpt.b φ B W
climeqmpt.m φ M
climeqmpt.z Z = M
climeqmpt.s φ Z A
climeqmpt.t φ Z B
climeqmpt.c φ x Z C U
Assertion climeqmpt φ x A C D x B C D

Proof

Step Hyp Ref Expression
1 climeqmpt.x x φ
2 climeqmpt.a φ A V
3 climeqmpt.b φ B W
4 climeqmpt.m φ M
5 climeqmpt.z Z = M
6 climeqmpt.s φ Z A
7 climeqmpt.t φ Z B
8 climeqmpt.c φ x Z C U
9 nfmpt1 _ x x A C
10 nfmpt1 _ x x B C
11 2 mptexd φ x A C V
12 3 mptexd φ x B C V
13 6 adantr φ x Z Z A
14 simpr φ x Z x Z
15 13 14 sseldd φ x Z x A
16 eqid x A C = x A C
17 16 fvmpt2 x A C U x A C x = C
18 15 8 17 syl2anc φ x Z x A C x = C
19 7 adantr φ x Z Z B
20 19 14 sseldd φ x Z x B
21 eqid x B C = x B C
22 21 fvmpt2 x B C U x B C x = C
23 20 8 22 syl2anc φ x Z x B C x = C
24 23 eqcomd φ x Z C = x B C x
25 18 24 eqtrd φ x Z x A C x = x B C x
26 1 9 10 4 5 11 12 25 climeqf φ x A C D x B C D