| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem5.a |  |-  F/ n ph | 
						
							| 2 |  | smflimsuplem5.b |  |-  F/ m ph | 
						
							| 3 |  | smflimsuplem5.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smflimsuplem5.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smflimsuplem5.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smflimsuplem5.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smflimsuplem5.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 8 |  | smflimsuplem5.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 9 |  | smflimsuplem5.r |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 10 |  | smflimsuplem5.n |  |-  ( ph -> N e. Z ) | 
						
							| 11 |  | smflimsuplem5.x |  |-  ( ph -> X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) ) | 
						
							| 12 | 4 | eleq2i |  |-  ( N e. Z <-> N e. ( ZZ>= ` M ) ) | 
						
							| 13 | 12 | biimpi |  |-  ( N e. Z -> N e. ( ZZ>= ` M ) ) | 
						
							| 14 |  | uzss |  |-  ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( N e. Z -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) | 
						
							| 16 | 15 4 | sseqtrrdi |  |-  ( N e. Z -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 17 | 10 16 | syl |  |-  ( ph -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 18 | 17 | sselda |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) | 
						
							| 19 |  | nfcv |  |-  F/_ x Z | 
						
							| 20 |  | nfrab1 |  |-  F/_ x { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 21 | 19 20 | nfmpt |  |-  F/_ x ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 22 | 7 21 | nfcxfr |  |-  F/_ x E | 
						
							| 23 |  | nfcv |  |-  F/_ x n | 
						
							| 24 | 22 23 | nffv |  |-  F/_ x ( E ` n ) | 
						
							| 25 |  | fvex |  |-  ( E ` n ) e. _V | 
						
							| 26 | 24 25 | mptexf |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) | 
						
							| 28 | 8 | fvmpt2 |  |-  ( ( n e. Z /\ ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 29 | 18 27 28 | syl2anc |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 30 | 29 | fveq1d |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` X ) = ( ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ` X ) ) | 
						
							| 31 |  | nfcv |  |-  F/_ y ( E ` n ) | 
						
							| 32 |  | nfcv |  |-  F/_ y sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) | 
						
							| 33 |  | nfcv |  |-  F/_ x sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) | 
						
							| 34 |  | fveq2 |  |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 35 | 34 | mpteq2dv |  |-  ( x = y -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 36 | 35 | rneqd |  |-  ( x = y -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 37 | 36 | supeq1d |  |-  ( x = y -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) | 
						
							| 38 | 24 31 32 33 37 | cbvmptf |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( y e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) ) | 
						
							| 39 |  | simpl |  |-  ( ( y = X /\ m e. ( ZZ>= ` n ) ) -> y = X ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( y = X /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) | 
						
							| 41 | 40 | mpteq2dva |  |-  ( y = X -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 42 | 41 | rneqd |  |-  ( y = X -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 43 | 42 | supeq1d |  |-  ( y = X -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( y = X -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) ) | 
						
							| 45 |  | uzss |  |-  ( n e. ( ZZ>= ` N ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` N ) ) | 
						
							| 46 |  | iinss1 |  |-  ( ( ZZ>= ` n ) C_ ( ZZ>= ` N ) -> |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) C_ |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( n e. ( ZZ>= ` N ) -> |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) C_ |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) C_ |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 49 | 11 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) ) | 
						
							| 50 | 48 49 | sseldd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 51 |  | nfv |  |-  F/ m n e. ( ZZ>= ` N ) | 
						
							| 52 | 2 51 | nfan |  |-  F/ m ( ph /\ n e. ( ZZ>= ` N ) ) | 
						
							| 53 |  | eqid |  |-  ( ZZ>= ` n ) = ( ZZ>= ` n ) | 
						
							| 54 |  | simpll |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ph ) | 
						
							| 55 | 45 | sselda |  |-  ( ( n e. ( ZZ>= ` N ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 56 | 55 | adantll |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 57 | 5 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> S e. SAlg ) | 
						
							| 58 |  | simpl |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ph ) | 
						
							| 59 | 17 | sselda |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. Z ) | 
						
							| 60 | 6 | ffvelcdmda |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 61 | 58 59 60 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 62 |  | eqid |  |-  dom ( F ` m ) = dom ( F ` m ) | 
						
							| 63 | 57 61 62 | smff |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) | 
						
							| 64 |  | eliin |  |-  ( X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) -> ( X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) <-> A. m e. ( ZZ>= ` N ) X e. dom ( F ` m ) ) ) | 
						
							| 65 | 11 64 | syl |  |-  ( ph -> ( X e. |^|_ m e. ( ZZ>= ` N ) dom ( F ` m ) <-> A. m e. ( ZZ>= ` N ) X e. dom ( F ` m ) ) ) | 
						
							| 66 | 11 65 | mpbid |  |-  ( ph -> A. m e. ( ZZ>= ` N ) X e. dom ( F ` m ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> A. m e. ( ZZ>= ` N ) X e. dom ( F ` m ) ) | 
						
							| 68 |  | simpr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 69 |  | rspa |  |-  ( ( A. m e. ( ZZ>= ` N ) X e. dom ( F ` m ) /\ m e. ( ZZ>= ` N ) ) -> X e. dom ( F ` m ) ) | 
						
							| 70 | 67 68 69 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> X e. dom ( F ` m ) ) | 
						
							| 71 | 63 70 | ffvelcdmd |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` X ) e. RR ) | 
						
							| 72 | 54 56 71 | syl2anc |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. RR ) | 
						
							| 73 |  | eluzelz |  |-  ( n e. ( ZZ>= ` N ) -> n e. ZZ ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ZZ ) | 
						
							| 75 | 3 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> M e. ZZ ) | 
						
							| 76 |  | fvex |  |-  ( ( F ` m ) ` X ) e. _V | 
						
							| 77 | 76 | a1i |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. Z ) -> ( ( F ` m ) ` X ) e. _V ) | 
						
							| 78 | 52 74 75 53 4 72 77 | limsupequzmpt |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 79 | 9 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 80 | 78 79 | eqeltrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 81 | 80 | renepnfd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) =/= +oo ) | 
						
							| 82 | 52 53 72 81 | limsupubuzmpt |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) | 
						
							| 83 |  | uzid2 |  |-  ( n e. ( ZZ>= ` N ) -> n e. ( ZZ>= ` n ) ) | 
						
							| 84 | 83 | ne0d |  |-  ( n e. ( ZZ>= ` N ) -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 86 | 52 85 72 | supxrre3rnmpt |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR <-> E. y e. RR A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) <_ y ) ) | 
						
							| 87 | 82 86 | mpbird |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) e. RR ) | 
						
							| 88 | 44 50 87 | elrabd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> X e. { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } ) | 
						
							| 89 |  | simpl |  |-  ( ( y = x /\ m e. ( ZZ>= ` n ) ) -> y = x ) | 
						
							| 90 | 89 | fveq2d |  |-  ( ( y = x /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` x ) ) | 
						
							| 91 | 90 | mpteq2dva |  |-  ( y = x -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 92 | 91 | rneqd |  |-  ( y = x -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) = ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 93 | 92 | supeq1d |  |-  ( y = x -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 94 | 93 | eleq1d |  |-  ( y = x -> ( sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR <-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 95 | 94 | cbvrabv |  |-  { y e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` y ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 96 | 88 95 | eleqtrdi |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> X e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 97 |  | eqid |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 98 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 99 | 98 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 100 | 99 | rgenw |  |-  A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V | 
						
							| 101 | 100 | a1i |  |-  ( n e. ( ZZ>= ` N ) -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 102 | 84 101 | iinexd |  |-  ( n e. ( ZZ>= ` N ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 103 | 102 | adantl |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 104 | 97 103 | rabexd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 105 | 7 | fvmpt2 |  |-  ( ( n e. Z /\ { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 106 | 18 104 105 | syl2anc |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 107 | 96 106 | eleqtrrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> X e. ( E ` n ) ) | 
						
							| 108 | 38 43 107 87 | fvmptd3 |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ` X ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) | 
						
							| 109 | 30 108 | eqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` X ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) | 
						
							| 110 | 1 109 | mpteq2da |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) = ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) ) | 
						
							| 111 | 4 | eluzelz2 |  |-  ( N e. Z -> N e. ZZ ) | 
						
							| 112 | 10 111 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 113 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 114 | 76 | a1i |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` X ) e. _V ) | 
						
							| 115 | 76 | a1i |  |-  ( ( ph /\ m e. Z ) -> ( ( F ` m ) ` X ) e. _V ) | 
						
							| 116 | 2 112 3 113 4 114 115 | limsupequzmpt |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 117 | 116 9 | eqeltrd |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) e. RR ) | 
						
							| 118 | 2 112 113 71 117 | supcnvlimsupmpt |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) , RR* , < ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 119 | 110 118 | eqbrtrd |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` X ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` X ) ) ) ) |