Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem7.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smflimsuplem7.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smflimsuplem7.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smflimsuplem7.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smflimsuplem7.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
6 |
|
smflimsuplem7.e |
⊢ 𝐸 = ( 𝑘 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
7 |
|
smflimsuplem7.h |
⊢ 𝐻 = ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑘 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
8 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
9 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → 𝜑 ) |
10 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
12 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
13 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
14 |
12 13
|
sylib |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
17 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
18 |
|
nfcv |
⊢ Ⅎ 𝑚 lim sup |
19 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
20 |
18 19
|
nffv |
⊢ Ⅎ 𝑚 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑚 ℝ |
22 |
20 21
|
nfel |
⊢ Ⅎ 𝑚 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ |
23 |
17 22
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
24 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
25 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
26 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
27 |
25 26
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
28 |
23 24 27
|
nf3an |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
29 |
|
nfv |
⊢ Ⅎ 𝑚 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) |
30 |
28 29
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
31 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
32 |
31 1
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑀 ∈ ℤ ) |
33 |
31 3
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑆 ∈ SAlg ) |
34 |
31 4
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
35 |
2
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
36 |
35
|
3ad2antl2 |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
37 |
|
simpl1r |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
38 |
|
uzss |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
39 |
|
iinss1 |
⊢ ( ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑛 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
42 |
|
simpl |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
43 |
41 42
|
sseldd |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
44 |
43
|
3ad2antl3 |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ) |
45 |
30 32 2 33 34 6 7 36 37 44
|
smflimsuplem2 |
⊢ ( ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐻 ‘ 𝑘 ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐻 ‘ 𝑘 ) ) |
47 |
|
vex |
⊢ 𝑥 ∈ V |
48 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐻 ‘ 𝑘 ) ) ) |
49 |
47 48
|
ax-mp |
⊢ ( 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐻 ‘ 𝑘 ) ) |
50 |
46 49
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
51 |
50
|
3exp |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) ) ) |
52 |
16 51
|
reximdai |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) ) |
53 |
52
|
imp |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
54 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
55 |
53 54
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
56 |
9 11 15 55
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
57 |
13
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
58 |
12 57
|
syl |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
60 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
61 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
62 |
|
nfv |
⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ |
63 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
64 |
62 63
|
nfrabw |
⊢ Ⅎ 𝑛 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
65 |
61 64
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
66 |
60 65
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
67 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
68 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
69 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝜑 ) |
70 |
69 1
|
syl |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑀 ∈ ℤ ) |
71 |
69 3
|
syl |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑆 ∈ SAlg ) |
72 |
69 4
|
syl |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
73 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
74 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ 𝑍 ) |
75 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
76 |
68 28 70 2 71 72 6 7 73 74 75
|
smflimsuplem6 |
⊢ ( ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
77 |
76
|
3exp |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
78 |
11 77
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) ) |
79 |
66 67 78
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
80 |
59 79
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
81 |
56 80
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
82 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ) |
83 |
81 82
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
84 |
83
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) ) |
85 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) |
86 |
85
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
87 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
88 |
87
|
uzidd |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
90 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
91 |
|
xrltso |
⊢ < Or ℝ* |
92 |
91
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → < Or ℝ* ) |
93 |
92
|
supexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V ) |
94 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
95 |
90 93 94
|
fnmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) Fn ( 𝐸 ‘ 𝑛 ) ) |
96 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝑛 ) ) |
97 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑛 ) ) |
98 |
97
|
mpteq1d |
⊢ ( 𝑘 = 𝑛 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
99 |
98
|
rneqd |
⊢ ( 𝑘 = 𝑛 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
100 |
99
|
supeq1d |
⊢ ( 𝑘 = 𝑛 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
101 |
96 100
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑘 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
102 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
103 |
102
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
104 |
101 7 103
|
fvmpt |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
106 |
105
|
fneq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑛 ) Fn ( 𝐸 ‘ 𝑛 ) ↔ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) Fn ( 𝐸 ‘ 𝑛 ) ) ) |
107 |
95 106
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) Fn ( 𝐸 ‘ 𝑛 ) ) |
108 |
107
|
fndmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐻 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑛 ) ) |
109 |
97
|
iineq1d |
⊢ ( 𝑘 = 𝑛 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
110 |
109
|
eleq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ) |
111 |
100
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
112 |
110 111
|
anbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) ) |
113 |
112
|
rabbidva2 |
⊢ ( 𝑘 = 𝑛 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
114 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
115 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
116 |
115
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
117 |
116
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
118 |
117
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
119 |
118
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ) ) |
120 |
119
|
cbvrabv |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } |
121 |
88
|
ne0d |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
122 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
123 |
122
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
124 |
123
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
125 |
124
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
126 |
121 125
|
iinexd |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
127 |
120 126
|
rabexd |
⊢ ( 𝑛 ∈ 𝑍 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
128 |
6 113 114 127
|
fvmptd3 |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
129 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
130 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
131 |
130
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
132 |
129 131
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
133 |
108 132
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom ( 𝐻 ‘ 𝑛 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
134 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑛 ) ) |
135 |
134
|
dmeqd |
⊢ ( 𝑘 = 𝑛 → dom ( 𝐻 ‘ 𝑘 ) = dom ( 𝐻 ‘ 𝑛 ) ) |
136 |
135
|
sseq1d |
⊢ ( 𝑘 = 𝑛 → ( dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ dom ( 𝐻 ‘ 𝑛 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ) |
137 |
136
|
rspcev |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ∧ dom ( 𝐻 ‘ 𝑛 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
138 |
89 133 137
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
139 |
|
iinss |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
140 |
138 139
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
141 |
140
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
142 |
|
ss2iun |
⊢ ( ∀ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
143 |
141 142
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
144 |
86 143
|
sstrd |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
145 |
82
|
simplbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
146 |
54
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
147 |
145 146
|
syl |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
149 |
|
nfiu1 |
⊢ Ⅎ 𝑛 ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) |
150 |
67 149
|
nfrabw |
⊢ Ⅎ 𝑛 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
151 |
61 150
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
152 |
60 151
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
153 |
82
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
154 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
155 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) |
156 |
|
nfcv |
⊢ Ⅎ 𝑘 dom ⇝ |
157 |
155 156
|
nfel |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ |
158 |
154 157
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
159 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ 𝑍 |
160 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
161 |
|
nfii1 |
⊢ Ⅎ 𝑘 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) |
162 |
160 161
|
nfel |
⊢ Ⅎ 𝑘 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) |
163 |
158 159 162
|
nf3an |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
164 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
165 |
164
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑀 ∈ ℤ ) |
166 |
165
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑀 ∈ ℤ ) |
167 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
168 |
167
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑆 ∈ SAlg ) |
169 |
168
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑆 ∈ SAlg ) |
170 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
171 |
170
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
172 |
171
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
173 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑛 ∈ 𝑍 ) |
174 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) |
175 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
176 |
163 166 2 169 172 6 7 173 174 175
|
smflimsuplem4 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
177 |
176
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) ) |
178 |
153 177
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) ) |
179 |
152 62 178
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
180 |
148 179
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
181 |
180
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
182 |
144 181
|
jca |
⊢ ( 𝜑 → ( { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ∀ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
183 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
184 |
|
nfcv |
⊢ Ⅎ 𝑥 ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
185 |
183 184
|
ssrabf |
⊢ ( { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↔ ( { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ∀ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
186 |
182 185
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
187 |
186
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) ) |
188 |
84 187
|
impbid |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) ) |
189 |
188
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) ) |
190 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
191 |
190 183
|
cleqf |
⊢ ( { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) ) |
192 |
189 191
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
193 |
8 192
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |