| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem7.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smflimsuplem7.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smflimsuplem7.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smflimsuplem7.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smflimsuplem7.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 6 |  | smflimsuplem7.e | ⊢ 𝐸  =  ( 𝑘  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 7 |  | smflimsuplem7.h | ⊢ 𝐻  =  ( 𝑘  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑘 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 8 | 5 | a1i | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  𝜑 ) | 
						
							| 10 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 12 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 13 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑚 lim sup | 
						
							| 19 |  | nfmpt1 | ⊢ Ⅎ 𝑚 ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | nffv | ⊢ Ⅎ 𝑚 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑚 ℝ | 
						
							| 22 | 20 21 | nfel | ⊢ Ⅎ 𝑚 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ | 
						
							| 23 | 17 22 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑚 𝑛  ∈  𝑍 | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑚 𝑥 | 
						
							| 26 |  | nfii1 | ⊢ Ⅎ 𝑚 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 27 | 25 26 | nfel | ⊢ Ⅎ 𝑚 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 28 | 23 24 27 | nf3an | ⊢ Ⅎ 𝑚 ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑚 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 30 | 28 29 | nfan | ⊢ Ⅎ 𝑚 ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 31 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 32 | 31 1 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 33 | 31 3 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 34 | 31 4 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 35 | 2 | uztrn2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 36 | 35 | 3ad2antl2 | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 37 |  | simpl1r | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 38 |  | uzss | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ℤ≥ ‘ 𝑘 )  ⊆  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 39 |  | iinss1 | ⊢ ( ( ℤ≥ ‘ 𝑘 )  ⊆  ( ℤ≥ ‘ 𝑛 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 42 |  | simpl | ⊢ ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 43 | 41 42 | sseldd | ⊢ ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 44 | 43 | 3ad2antl3 | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 45 | 30 32 2 33 34 6 7 36 37 44 | smflimsuplem2 | ⊢ ( ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 47 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 48 |  | eliin | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐻 ‘ 𝑘 ) ) ) | 
						
							| 49 | 47 48 | ax-mp | ⊢ ( 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 50 | 46 49 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 51 | 50 | 3exp | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) ) ) | 
						
							| 52 | 16 51 | reximdai | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 54 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 55 | 53 54 | sylibr | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 56 | 9 11 15 55 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 57 | 13 | biimpi | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 58 | 12 57 | syl | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 60 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 61 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ | 
						
							| 63 |  | nfiu1 | ⊢ Ⅎ 𝑛 ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 64 | 62 63 | nfrabw | ⊢ Ⅎ 𝑛 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 65 | 61 64 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 66 | 60 65 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 67 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝ | 
						
							| 68 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 69 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝜑 ) | 
						
							| 70 | 69 1 | syl | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 71 | 69 3 | syl | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 72 | 69 4 | syl | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 73 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 74 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 75 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 76 | 68 28 70 2 71 72 6 7 73 74 75 | smflimsuplem6 | ⊢ ( ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 77 | 76 | 3exp | ⊢ ( ( 𝜑  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) ) | 
						
							| 78 | 11 77 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) ) | 
						
							| 79 | 66 67 78 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) | 
						
							| 80 | 59 79 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 81 | 56 80 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) | 
						
							| 82 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↔  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) ) | 
						
							| 83 | 81 82 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } )  →  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) | 
						
							| 84 | 83 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) ) | 
						
							| 85 |  | ssrab2 | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) | 
						
							| 86 | 85 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 87 | 2 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 88 | 87 | uzidd | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 90 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 91 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 92 | 91 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →   <   Or  ℝ* ) | 
						
							| 93 | 92 | supexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 94 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 95 | 90 93 94 | fnmptd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  Fn  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐸 ‘ 𝑘 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ℤ≥ ‘ 𝑘 )  =  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 98 | 97 | mpteq1d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 99 | 98 | rneqd | ⊢ ( 𝑘  =  𝑛  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 100 | 99 | supeq1d | ⊢ ( 𝑘  =  𝑛  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 101 | 96 100 | mpteq12dv | ⊢ ( 𝑘  =  𝑛  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑘 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 102 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 103 | 102 | mptex | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 104 | 101 7 103 | fvmpt | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 106 | 105 | fneq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐻 ‘ 𝑛 )  Fn  ( 𝐸 ‘ 𝑛 )  ↔  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  Fn  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 107 | 95 106 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  Fn  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 108 | 107 | fndmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐻 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 109 | 97 | iineq1d | ⊢ ( 𝑘  =  𝑛  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 110 | 109 | eleq2d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 111 | 100 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 112 | 110 111 | anbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ )  ↔  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) ) | 
						
							| 113 | 112 | rabbidva2 | ⊢ ( 𝑘  =  𝑛  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 114 |  | id | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  𝑍 ) | 
						
							| 115 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 116 | 115 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 117 | 116 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 118 | 117 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 119 | 118 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 120 | 119 | cbvrabv | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 121 | 88 | ne0d | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 122 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 123 | 122 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 124 | 123 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 125 | 124 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 126 | 121 125 | iinexd | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 127 | 120 126 | rabexd | ⊢ ( 𝑛  ∈  𝑍  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 128 | 6 113 114 127 | fvmptd3 | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 130 |  | ssrab2 | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 131 | 130 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 132 | 129 131 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 133 | 108 132 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  ( 𝐻 ‘ 𝑛 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 134 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 135 | 134 | dmeqd | ⊢ ( 𝑘  =  𝑛  →  dom  ( 𝐻 ‘ 𝑘 )  =  dom  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 136 | 135 | sseq1d | ⊢ ( 𝑘  =  𝑛  →  ( dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  dom  ( 𝐻 ‘ 𝑛 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 137 | 136 | rspcev | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑛 )  ∧  dom  ( 𝐻 ‘ 𝑛 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 138 | 89 133 137 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 139 |  | iinss | ⊢ ( ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 140 | 138 139 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 141 | 140 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 142 |  | ss2iun | ⊢ ( ∀ 𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 144 | 86 143 | sstrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 145 | 82 | simplbi | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 146 | 54 | biimpi | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 147 | 145 146 | syl | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 149 |  | nfiu1 | ⊢ Ⅎ 𝑛 ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) | 
						
							| 150 | 67 149 | nfrabw | ⊢ Ⅎ 𝑛 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 151 | 61 150 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 152 | 60 151 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) | 
						
							| 153 | 82 | simprbi | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 154 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 155 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) | 
						
							| 156 |  | nfcv | ⊢ Ⅎ 𝑘 dom   ⇝ | 
						
							| 157 | 155 156 | nfel | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝ | 
						
							| 158 | 154 157 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 159 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  𝑍 | 
						
							| 160 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 161 |  | nfii1 | ⊢ Ⅎ 𝑘 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) | 
						
							| 162 | 160 161 | nfel | ⊢ Ⅎ 𝑘 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) | 
						
							| 163 | 158 159 162 | nf3an | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 164 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑀  ∈  ℤ ) | 
						
							| 165 | 164 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 166 | 165 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 167 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 168 | 167 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 169 | 168 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 170 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 171 | 170 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 172 | 171 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 173 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 174 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 175 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  ) | 
						
							| 176 | 163 166 2 169 172 6 7 173 174 175 | smflimsuplem4 | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 177 | 176 | 3exp | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) ) | 
						
							| 178 | 153 177 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) ) | 
						
							| 179 | 152 62 178 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 180 | 148 179 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 181 | 180 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 182 | 144 181 | jca | ⊢ ( 𝜑  →  ( { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  ∀ 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 183 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } | 
						
							| 184 |  | nfcv | ⊢ Ⅎ 𝑥 ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 185 | 183 184 | ssrabf | ⊢ ( { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↔  ( { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  ∀ 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 186 | 182 185 | sylibr | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ⊆  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 187 | 186 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  →  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) ) | 
						
							| 188 | 84 187 | impbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↔  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) ) | 
						
							| 189 | 188 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↔  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) ) | 
						
							| 190 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 191 | 190 183 | cleqf | ⊢ ( { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↔  ∀ 𝑥 ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↔  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) ) | 
						
							| 192 | 189 191 | sylibr | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) | 
						
							| 193 | 8 192 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) |