Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem8.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
smflimsuplem8.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smflimsuplem8.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smflimsuplem8.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smflimsuplem8.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
6 |
|
smflimsuplem8.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
7 |
|
smflimsuplem8.e |
⊢ 𝐸 = ( 𝑘 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
8 |
|
smflimsuplem8.h |
⊢ 𝐻 = ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑘 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
9 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
10 |
1 2 3 4 5 7 8
|
smflimsuplem7 |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
11 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
12 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
14 |
13 5
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
18 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
21 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
22 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
23 |
21 22
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
24 |
19 20 23
|
nf3an |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑀 ∈ ℤ ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑀 ∈ ℤ ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑆 ∈ SAlg ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑆 ∈ SAlg ) |
29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
31 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
32 |
31 5
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐷 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
33 |
|
fveq2 |
⊢ ( 𝑚 = 𝑦 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑦 ) ) |
34 |
33
|
fveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
35 |
34
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
37 |
36
|
fveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
38 |
37
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
40 |
39
|
fveq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
41 |
40
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) ) = ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
42 |
35 38 41
|
3eqtr2i |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
43 |
42
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) |
44 |
43
|
eleq1i |
⊢ ( ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
45 |
32 44
|
sylib |
⊢ ( 𝑥 ∈ 𝐷 → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
48 |
47 44
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
49 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ 𝑍 ) |
50 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
51 |
18 24 26 2 28 30 7 8 48 49 50
|
smflimsuplem5 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
52 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ∈ V ) |
53 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
54 |
53
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑍 ∈ V ) |
55 |
2 49
|
eluzelz2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ ℤ ) |
56 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
57 |
55
|
uzidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
58 |
57
|
uzssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
59 |
2 49
|
uzssd2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
60 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V ) |
61 |
18 52 54 55 56 58 59 60
|
climeqmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
62 |
51 61
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
63 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝜑 ) |
64 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
65 |
64 20
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
66 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ℤ ) |
68 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
69 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
70 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
71 |
65 67 68 56 2 69 70
|
limsupequzmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
72 |
63 49 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
73 |
62 72
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
74 |
73
|
climfvd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) |
75 |
74
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) ) |
76 |
16 17 75
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
77 |
15 76
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) |
78 |
10 77
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
79 |
9 78
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
80 |
1 2 3 4 7 8
|
smflimsuplem3 |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
81 |
79 80
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |