| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem8.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smflimsuplem8.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smflimsuplem8.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smflimsuplem8.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smflimsuplem8.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 6 |  | smflimsuplem8.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 7 |  | smflimsuplem8.e | ⊢ 𝐸  =  ( 𝑘  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 8 |  | smflimsuplem8.h | ⊢ 𝐻  =  ( 𝑘  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑘 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 9 | 6 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 10 | 1 2 3 4 5 7 8 | smflimsuplem7 | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  } ) | 
						
							| 11 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 12 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 14 | 13 5 | eleq2s | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑥  ∈  𝐷 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑚 𝑛  ∈  𝑍 | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑚 𝑥 | 
						
							| 22 |  | nfii1 | ⊢ Ⅎ 𝑚 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 23 | 21 22 | nfel | ⊢ Ⅎ 𝑚 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 24 | 19 20 23 | nf3an | ⊢ Ⅎ 𝑚 ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 25 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑀  ∈  ℤ ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑆  ∈  SAlg ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 29 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 31 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 32 | 31 5 | eleq2s | ⊢ ( 𝑥  ∈  𝐷  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑚  =  𝑦  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 34 | 33 | fveq1d | ⊢ ( 𝑚  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 35 | 34 | cbvmptv | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑦  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 37 | 36 | fveq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 38 | 37 | cbvmptv | ⊢ ( 𝑧  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) )  =  ( 𝑦  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 40 | 39 | fveq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) | 
						
							| 41 | 40 | cbvmptv | ⊢ ( 𝑧  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) )  =  ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) | 
						
							| 42 | 35 38 41 | 3eqtr2i | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) | 
						
							| 43 | 42 | fveq2i | ⊢ ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | eleq1i | ⊢ ( ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim sup ‘ ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 45 | 32 44 | sylib | ⊢ ( 𝑥  ∈  𝐷  →  ( lim sup ‘ ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim sup ‘ ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim sup ‘ ( 𝑤  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 48 | 47 44 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 49 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 50 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 51 | 18 24 26 2 28 30 7 8 48 49 50 | smflimsuplem5 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 52 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ℤ≥ ‘ 𝑛 )  ∈  V ) | 
						
							| 53 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 54 | 53 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑍  ∈  V ) | 
						
							| 55 | 2 49 | eluzelz2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 56 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 57 | 55 | uzidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 58 | 57 | uzssd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 59 | 2 49 | uzssd2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  𝑍 ) | 
						
							| 60 |  | fvexd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 61 | 18 52 54 55 56 58 59 60 | climeqmpt | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ↔  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 62 | 51 61 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 63 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  𝜑 ) | 
						
							| 64 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 65 | 64 20 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 66 | 2 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  ℤ ) | 
						
							| 68 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑀  ∈  ℤ ) | 
						
							| 69 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 70 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 71 | 65 67 68 56 2 69 70 | limsupequzmpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 72 | 63 49 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 73 | 62 72 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ⇝  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 74 | 73 | climfvd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) | 
						
							| 75 | 74 | 3exp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 76 | 16 17 75 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 77 | 15 76 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) | 
						
							| 78 | 10 77 | mpteq12dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 79 | 9 78 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 80 | 1 2 3 4 7 8 | smflimsuplem3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐻 ‘ 𝑘 )  ∣  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) )  ∈  dom   ⇝  }  ↦  (  ⇝  ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 81 | 79 80 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |