| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem8.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smflimsuplem8.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smflimsuplem8.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smflimsuplem8.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smflimsuplem8.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
| 6 |
|
smflimsuplem8.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 7 |
|
smflimsuplem8.e |
⊢ 𝐸 = ( 𝑘 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 8 |
|
smflimsuplem8.h |
⊢ 𝐻 = ( 𝑘 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑘 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 9 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 10 |
1 2 3 4 5 7 8
|
smflimsuplem7 |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 11 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 12 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 14 |
13 5
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
| 22 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 23 |
21 22
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 24 |
19 20 23
|
nf3an |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑀 ∈ ℤ ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑀 ∈ ℤ ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑆 ∈ SAlg ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑆 ∈ SAlg ) |
| 29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 31 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 32 |
31 5
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐷 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 33 |
|
fveq2 |
⊢ ( 𝑚 = 𝑦 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 34 |
33
|
fveq1d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 35 |
34
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 37 |
36
|
fveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 38 |
37
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 40 |
39
|
fveq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
| 41 |
40
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑥 ) ) = ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
| 42 |
35 38 41
|
3eqtr2i |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) |
| 43 |
42
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) |
| 44 |
43
|
eleq1i |
⊢ ( ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 45 |
32 44
|
sylib |
⊢ ( 𝑥 ∈ 𝐷 → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑤 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 48 |
47 44
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 49 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ 𝑍 ) |
| 50 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 51 |
18 24 26 2 28 30 7 8 48 49 50
|
smflimsuplem5 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 52 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ∈ V ) |
| 53 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
| 54 |
53
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑍 ∈ V ) |
| 55 |
2 49
|
eluzelz2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ ℤ ) |
| 56 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 57 |
55
|
uzidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 58 |
57
|
uzssd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) |
| 59 |
2 49
|
uzssd2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 60 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V ) |
| 61 |
18 52 54 55 56 58 59 60
|
climeqmpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ↔ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 62 |
51 61
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 63 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝜑 ) |
| 64 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
| 65 |
64 20
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 66 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ℤ ) |
| 68 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
| 69 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 70 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 71 |
65 67 68 56 2 69 70
|
limsupequzmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 72 |
63 49 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 73 |
62 72
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ⇝ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 74 |
73
|
climfvd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) |
| 75 |
74
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) ) |
| 76 |
16 17 75
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
| 77 |
15 76
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) |
| 78 |
10 77
|
mpteq12dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
| 79 |
9 78
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ) |
| 80 |
1 2 3 4 7 8
|
smflimsuplem3 |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐻 ‘ 𝑘 ) ∣ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ↦ ( ⇝ ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐻 ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 81 |
79 80
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |