Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsup.n |
⊢ Ⅎ 𝑚 𝐹 |
2 |
|
smflimsup.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smflimsup.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
smflimsup.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
smflimsup.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
6 |
|
smflimsup.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smflimsup.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
8 |
|
smflimsup.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑗 ) ) |
10 |
9
|
iineq1d |
⊢ ( 𝑛 = 𝑗 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑚 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑞 dom ( 𝐹 ‘ 𝑚 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑞 |
13 |
1 12
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑞 ) |
14 |
13
|
nfdm |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑞 ) |
15 |
|
fveq2 |
⊢ ( 𝑚 = 𝑞 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑞 ) ) |
16 |
15
|
dmeqd |
⊢ ( 𝑚 = 𝑞 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑞 ) ) |
17 |
11 14 16
|
cbviin |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) |
18 |
17
|
a1i |
⊢ ( 𝑛 = 𝑗 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ) |
19 |
10 18
|
eqtrd |
⊢ ( 𝑛 = 𝑗 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ) |
20 |
19
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) |
21 |
20
|
eleq2i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑞 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
24 |
13 23
|
nffv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) |
25 |
15
|
fveq1d |
⊢ ( 𝑚 = 𝑞 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) |
26 |
22 24 25
|
cbvmpt |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) |
27 |
26
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) |
28 |
27
|
eleq1i |
⊢ ( ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
29 |
21 28
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ∧ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
30 |
29
|
rabbia2 |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ∣ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
32 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑗 ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑞 |
34 |
2 33
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑞 ) |
35 |
34
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑞 ) |
36 |
32 35
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) |
37 |
31 36
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑤 ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) |
39 |
|
nfv |
⊢ Ⅎ 𝑤 ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ |
40 |
|
nfcv |
⊢ Ⅎ 𝑥 lim sup |
41 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
42 |
34 41
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) |
43 |
31 42
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
44 |
40 43
|
nffv |
⊢ Ⅎ 𝑥 ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
46 |
44 45
|
nfel |
⊢ Ⅎ 𝑥 ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ |
47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
48 |
47
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) |
50 |
49
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ ) ) |
51 |
37 38 39 46 50
|
cbvrabw |
⊢ { 𝑥 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ∣ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑤 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ∣ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ } |
52 |
7 30 51
|
3eqtri |
⊢ 𝐷 = { 𝑤 ∈ ∪ 𝑗 ∈ 𝑍 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑗 ) dom ( 𝐹 ‘ 𝑞 ) ∣ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ } |
53 |
27
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ) |
54 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
55 |
7 54
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
56 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐷 |
57 |
|
nfcv |
⊢ Ⅎ 𝑤 ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) |
58 |
55 56 57 44 49
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ) = ( 𝑤 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) |
59 |
8 53 58
|
3eqtri |
⊢ 𝐺 = ( 𝑤 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑞 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑖 ) |
61 |
60 35
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑤 ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) |
63 |
|
nfv |
⊢ Ⅎ 𝑤 sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ |
64 |
60 42
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
65 |
64
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
66 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ* |
67 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
68 |
65 66 67
|
nfsup |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) |
69 |
68 45
|
nfel |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ |
70 |
47
|
mpteq2dv |
⊢ ( 𝑥 = 𝑤 → ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
71 |
70
|
rneqd |
⊢ ( 𝑥 = 𝑤 → ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) = ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
72 |
71
|
supeq1d |
⊢ ( 𝑥 = 𝑤 → sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
73 |
72
|
eleq1d |
⊢ ( 𝑥 = 𝑤 → ( sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ) |
74 |
61 62 63 69 73
|
cbvrabw |
⊢ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } |
75 |
74
|
a1i |
⊢ ( 𝑖 = 𝑘 → { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } ) |
76 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑘 ) ) |
77 |
76
|
iineq1d |
⊢ ( 𝑖 = 𝑘 → ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) = ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ) |
78 |
77
|
eleq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ↔ 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ) ) |
79 |
76
|
mpteq1d |
⊢ ( 𝑖 = 𝑘 → ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
80 |
79
|
rneqd |
⊢ ( 𝑖 = 𝑘 → ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
81 |
80
|
supeq1d |
⊢ ( 𝑖 = 𝑘 → sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
82 |
81
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ) |
83 |
78 82
|
anbi12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ) ) |
84 |
83
|
rabbidva2 |
⊢ ( 𝑖 = 𝑘 → { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } ) |
85 |
75 84
|
eqtrd |
⊢ ( 𝑖 = 𝑘 → { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } ) |
86 |
85
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) = ( 𝑘 ∈ 𝑍 ↦ { 𝑤 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } ) |
87 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) |
88 |
87
|
mpteq2dv |
⊢ ( 𝑦 = 𝑤 → ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) = ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ) |
89 |
88
|
rneqd |
⊢ ( 𝑦 = 𝑤 → ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) = ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ) |
90 |
89
|
supeq1d |
⊢ ( 𝑦 = 𝑤 → sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
91 |
90
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
92 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑞 ) ) |
93 |
92
|
dmeqd |
⊢ ( 𝑝 = 𝑞 → dom ( 𝐹 ‘ 𝑝 ) = dom ( 𝐹 ‘ 𝑞 ) ) |
94 |
93
|
cbviinv |
⊢ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) = ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) |
95 |
94
|
eleq2i |
⊢ ( 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ↔ 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ) |
96 |
|
nfcv |
⊢ Ⅎ 𝑞 ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) |
97 |
|
nfcv |
⊢ Ⅎ 𝑝 ( 𝐹 ‘ 𝑞 ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑝 𝑥 |
99 |
97 98
|
nffv |
⊢ Ⅎ 𝑝 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) |
100 |
92
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) |
101 |
96 99 100
|
cbvmpt |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) |
102 |
101
|
rneqi |
⊢ ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) = ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) |
103 |
102
|
supeq1i |
⊢ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) |
104 |
103
|
eleq1i |
⊢ ( sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
105 |
95 104
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∧ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
106 |
105
|
rabbia2 |
⊢ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
107 |
106
|
mpteq2i |
⊢ ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) = ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
108 |
107
|
fveq1i |
⊢ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) = ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) |
109 |
92
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
110 |
109
|
cbvmptv |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
111 |
110
|
rneqi |
⊢ ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) |
112 |
111
|
supeq1i |
⊢ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) |
113 |
108 112
|
mpteq12i |
⊢ ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
114 |
91 113
|
eqtri |
⊢ ( 𝑦 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
115 |
114
|
a1i |
⊢ ( 𝑙 = 𝑘 → ( 𝑦 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) ) |
116 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) = ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ) |
117 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑘 ) ) |
118 |
117
|
mpteq1d |
⊢ ( 𝑙 = 𝑘 → ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
119 |
118
|
rneqd |
⊢ ( 𝑙 = 𝑘 → ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) |
120 |
119
|
supeq1d |
⊢ ( 𝑙 = 𝑘 → sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) |
121 |
116 120
|
mpteq12dv |
⊢ ( 𝑙 = 𝑘 → ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) ) |
122 |
115 121
|
eqtrd |
⊢ ( 𝑙 = 𝑘 → ( 𝑦 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) ) |
123 |
122
|
cbvmptv |
⊢ ( 𝑙 ∈ 𝑍 ↦ ( 𝑦 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑤 ∈ ( ( 𝑖 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑖 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ≥ ‘ 𝑘 ) ↦ ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) ) |
124 |
3 4 5 6 52 59 86 123
|
smflimsuplem8 |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |