Metamath Proof Explorer


Theorem smflimsup

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsup.n 𝑚 𝐹
smflimsup.x 𝑥 𝐹
smflimsup.m ( 𝜑𝑀 ∈ ℤ )
smflimsup.z 𝑍 = ( ℤ𝑀 )
smflimsup.s ( 𝜑𝑆 ∈ SAlg )
smflimsup.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimsup.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
smflimsup.g 𝐺 = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
Assertion smflimsup ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smflimsup.n 𝑚 𝐹
2 smflimsup.x 𝑥 𝐹
3 smflimsup.m ( 𝜑𝑀 ∈ ℤ )
4 smflimsup.z 𝑍 = ( ℤ𝑀 )
5 smflimsup.s ( 𝜑𝑆 ∈ SAlg )
6 smflimsup.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smflimsup.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
8 smflimsup.g 𝐺 = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
9 fveq2 ( 𝑛 = 𝑗 → ( ℤ𝑛 ) = ( ℤ𝑗 ) )
10 9 iineq1d ( 𝑛 = 𝑗 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑚 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑚 ) )
11 nfcv 𝑞 dom ( 𝐹𝑚 )
12 nfcv 𝑚 𝑞
13 1 12 nffv 𝑚 ( 𝐹𝑞 )
14 13 nfdm 𝑚 dom ( 𝐹𝑞 )
15 fveq2 ( 𝑚 = 𝑞 → ( 𝐹𝑚 ) = ( 𝐹𝑞 ) )
16 15 dmeqd ( 𝑚 = 𝑞 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑞 ) )
17 11 14 16 cbviin 𝑚 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑚 ) = 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 )
18 17 a1i ( 𝑛 = 𝑗 𝑚 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑚 ) = 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) )
19 10 18 eqtrd ( 𝑛 = 𝑗 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) )
20 19 cbviunv 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 )
21 20 eleq2i ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ↔ 𝑥 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) )
22 nfcv 𝑞 ( ( 𝐹𝑚 ) ‘ 𝑥 )
23 nfcv 𝑚 𝑥
24 13 23 nffv 𝑚 ( ( 𝐹𝑞 ) ‘ 𝑥 )
25 15 fveq1d ( 𝑚 = 𝑞 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑞 ) ‘ 𝑥 ) )
26 22 24 25 cbvmpt ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) )
27 26 fveq2i ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) )
28 27 eleq1i ( ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ )
29 21 28 anbi12i ( ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ↔ ( 𝑥 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) ∧ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ ) )
30 29 rabbia2 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) ∣ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ }
31 nfcv 𝑥 𝑍
32 nfcv 𝑥 ( ℤ𝑗 )
33 nfcv 𝑥 𝑞
34 2 33 nffv 𝑥 ( 𝐹𝑞 )
35 34 nfdm 𝑥 dom ( 𝐹𝑞 )
36 32 35 nfiin 𝑥 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 )
37 31 36 nfiun 𝑥 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 )
38 nfcv 𝑤 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 )
39 nfv 𝑤 ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ
40 nfcv 𝑥 lim sup
41 nfcv 𝑥 𝑤
42 34 41 nffv 𝑥 ( ( 𝐹𝑞 ) ‘ 𝑤 )
43 31 42 nfmpt 𝑥 ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
44 40 43 nffv 𝑥 ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
45 nfcv 𝑥
46 44 45 nfel 𝑥 ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ
47 fveq2 ( 𝑥 = 𝑤 → ( ( 𝐹𝑞 ) ‘ 𝑥 ) = ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
48 47 mpteq2dv ( 𝑥 = 𝑤 → ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) = ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
49 48 fveq2d ( 𝑥 = 𝑤 → ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) )
50 49 eleq1d ( 𝑥 = 𝑤 → ( ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ ) )
51 37 38 39 46 50 cbvrabw { 𝑥 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) ∣ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑤 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) ∣ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ }
52 7 30 51 3eqtri 𝐷 = { 𝑤 𝑗𝑍 𝑞 ∈ ( ℤ𝑗 ) dom ( 𝐹𝑞 ) ∣ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) ∈ ℝ }
53 27 mpteq2i ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) )
54 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
55 7 54 nfcxfr 𝑥 𝐷
56 nfcv 𝑤 𝐷
57 nfcv 𝑤 ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) )
58 55 56 57 44 49 cbvmptf ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) ) ) = ( 𝑤𝐷 ↦ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) )
59 8 53 58 3eqtri 𝐺 = ( 𝑤𝐷 ↦ ( lim sup ‘ ( 𝑞𝑍 ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) ) )
60 nfcv 𝑥 ( ℤ𝑖 )
61 60 35 nfiin 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 )
62 nfcv 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 )
63 nfv 𝑤 sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ
64 60 42 nfmpt 𝑥 ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
65 64 nfrn 𝑥 ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
66 nfcv 𝑥*
67 nfcv 𝑥 <
68 65 66 67 nfsup 𝑥 sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < )
69 68 45 nfel 𝑥 sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ
70 47 mpteq2dv ( 𝑥 = 𝑤 → ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
71 70 rneqd ( 𝑥 = 𝑤 → ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) = ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
72 71 supeq1d ( 𝑥 = 𝑤 → sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) )
73 72 eleq1d ( 𝑥 = 𝑤 → ( sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) )
74 61 62 63 69 73 cbvrabw { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ }
75 74 a1i ( 𝑖 = 𝑘 → { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } )
76 fveq2 ( 𝑖 = 𝑘 → ( ℤ𝑖 ) = ( ℤ𝑘 ) )
77 76 iineq1d ( 𝑖 = 𝑘 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) = 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) )
78 77 eleq2d ( 𝑖 = 𝑘 → ( 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ↔ 𝑤 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) ) )
79 76 mpteq1d ( 𝑖 = 𝑘 → ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
80 79 rneqd ( 𝑖 = 𝑘 → ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
81 80 supeq1d ( 𝑖 = 𝑘 → sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) )
82 81 eleq1d ( 𝑖 = 𝑘 → ( sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) )
83 78 82 anbi12d ( 𝑖 = 𝑘 → ( ( 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑤 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ ) ) )
84 83 rabbidva2 ( 𝑖 = 𝑘 → { 𝑤 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } )
85 75 84 eqtrd ( 𝑖 = 𝑘 → { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑤 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } )
86 85 cbvmptv ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) = ( 𝑘𝑍 ↦ { 𝑤 𝑞 ∈ ( ℤ𝑘 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ∈ ℝ } )
87 fveq2 ( 𝑦 = 𝑤 → ( ( 𝐹𝑝 ) ‘ 𝑦 ) = ( ( 𝐹𝑝 ) ‘ 𝑤 ) )
88 87 mpteq2dv ( 𝑦 = 𝑤 → ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) = ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) )
89 88 rneqd ( 𝑦 = 𝑤 → ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) = ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) )
90 89 supeq1d ( 𝑦 = 𝑤 → sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) )
91 90 cbvmptv ( 𝑦 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) )
92 fveq2 ( 𝑝 = 𝑞 → ( 𝐹𝑝 ) = ( 𝐹𝑞 ) )
93 92 dmeqd ( 𝑝 = 𝑞 → dom ( 𝐹𝑝 ) = dom ( 𝐹𝑞 ) )
94 93 cbviinv 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) = 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 )
95 94 eleq2i ( 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ↔ 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) )
96 nfcv 𝑞 ( ( 𝐹𝑝 ) ‘ 𝑥 )
97 nfcv 𝑝 ( 𝐹𝑞 )
98 nfcv 𝑝 𝑥
99 97 98 nffv 𝑝 ( ( 𝐹𝑞 ) ‘ 𝑥 )
100 92 fveq1d ( 𝑝 = 𝑞 → ( ( 𝐹𝑝 ) ‘ 𝑥 ) = ( ( 𝐹𝑞 ) ‘ 𝑥 ) )
101 96 99 100 cbvmpt ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) = ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) )
102 101 rneqi ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) = ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) )
103 102 supeq1i sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < )
104 103 eleq1i ( sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ )
105 95 104 anbi12i ( ( 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∧ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∧ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) )
106 105 rabbia2 { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
107 106 mpteq2i ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) = ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
108 107 fveq1i ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) = ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 )
109 92 fveq1d ( 𝑝 = 𝑞 → ( ( 𝐹𝑝 ) ‘ 𝑤 ) = ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
110 109 cbvmptv ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
111 110 rneqi ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) )
112 111 supeq1i sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < )
113 108 112 mpteq12i ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑤 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) )
114 91 113 eqtri ( 𝑦 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) )
115 114 a1i ( 𝑙 = 𝑘 → ( 𝑦 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) )
116 fveq2 ( 𝑙 = 𝑘 → ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) = ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) )
117 fveq2 ( 𝑙 = 𝑘 → ( ℤ𝑙 ) = ( ℤ𝑘 ) )
118 117 mpteq1d ( 𝑙 = 𝑘 → ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) = ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
119 118 rneqd ( 𝑙 = 𝑘 → ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) = ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) )
120 119 supeq1d ( 𝑙 = 𝑘 → sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) = sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) )
121 116 120 mpteq12dv ( 𝑙 = 𝑘 → ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) )
122 115 121 eqtrd ( 𝑙 = 𝑘 → ( 𝑦 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) = ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) )
123 122 cbvmptv ( 𝑙𝑍 ↦ ( 𝑦 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑝 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑝 ) ∣ sup ( ran ( 𝑝 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑙 ) ↦ sup ( ran ( 𝑝 ∈ ( ℤ𝑙 ) ↦ ( ( 𝐹𝑝 ) ‘ 𝑦 ) ) , ℝ* , < ) ) ) = ( 𝑘𝑍 ↦ ( 𝑤 ∈ ( ( 𝑖𝑍 ↦ { 𝑥 𝑞 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑞 ) ∣ sup ( ran ( 𝑞 ∈ ( ℤ𝑖 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) ‘ 𝑘 ) ↦ sup ( ran ( 𝑞 ∈ ( ℤ𝑘 ) ↦ ( ( 𝐹𝑞 ) ‘ 𝑤 ) ) , ℝ* , < ) ) )
124 3 4 5 6 52 59 86 123 smflimsuplem8 ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )