| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsup.n | ⊢ Ⅎ 𝑚 𝐹 | 
						
							| 2 |  | smflimsup.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smflimsup.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smflimsup.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smflimsup.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smflimsup.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smflimsup.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 8 |  | smflimsup.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 10 | 9 | iineq1d | ⊢ ( 𝑛  =  𝑗  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑞 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑚 𝑞 | 
						
							| 13 | 1 12 | nffv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑞 ) | 
						
							| 14 | 13 | nfdm | ⊢ Ⅎ 𝑚 dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑚  =  𝑞  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 16 | 15 | dmeqd | ⊢ ( 𝑚  =  𝑞  →  dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 17 | 11 14 16 | cbviin | ⊢ ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑛  =  𝑗  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 19 | 10 18 | eqtrd | ⊢ ( 𝑛  =  𝑗  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 20 | 19 | cbviunv | ⊢ ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 21 | 20 | eleq2i | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  𝑥  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑞 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑚 𝑥 | 
						
							| 24 | 13 23 | nffv | ⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) | 
						
							| 25 | 15 | fveq1d | ⊢ ( 𝑚  =  𝑞  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) | 
						
							| 26 | 22 24 25 | cbvmpt | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) | 
						
							| 27 | 26 | fveq2i | ⊢ ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) | 
						
							| 28 | 27 | eleq1i | ⊢ ( ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 29 | 21 28 | anbi12i | ⊢ ( ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  ↔  ( 𝑥  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 )  ∧  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 30 | 29 | rabbia2 | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑗 ) | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑥 𝑞 | 
						
							| 34 | 2 33 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑞 ) | 
						
							| 35 | 34 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 36 | 32 35 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 37 | 31 36 | nfiun | ⊢ Ⅎ 𝑥 ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑤 ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑤 ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑥 lim sup | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 42 | 34 41 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) | 
						
							| 43 | 31 42 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 44 | 40 43 | nffv | ⊢ Ⅎ 𝑥 ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 46 | 44 45 | nfel | ⊢ Ⅎ 𝑥 ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) )  ∈  ℝ | 
						
							| 47 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 48 | 47 | mpteq2dv | ⊢ ( 𝑥  =  𝑤  →  ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) )  =  ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( 𝑥  =  𝑤  →  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( 𝑥  =  𝑤  →  ( ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) )  ∈  ℝ ) ) | 
						
							| 51 | 37 38 39 46 50 | cbvrabw | ⊢ { 𝑥  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑤  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) )  ∈  ℝ } | 
						
							| 52 | 7 30 51 | 3eqtri | ⊢ 𝐷  =  { 𝑤  ∈  ∪  𝑗  ∈  𝑍 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑗 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) )  ∈  ℝ } | 
						
							| 53 | 27 | mpteq2i | ⊢ ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) ) | 
						
							| 54 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 55 | 7 54 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑤 𝐷 | 
						
							| 57 |  | nfcv | ⊢ Ⅎ 𝑤 ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) | 
						
							| 58 | 55 56 57 44 49 | cbvmptf | ⊢ ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ) )  =  ( 𝑤  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) | 
						
							| 59 | 8 53 58 | 3eqtri | ⊢ 𝐺  =  ( 𝑤  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑞  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑖 ) | 
						
							| 61 | 60 35 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 62 |  | nfcv | ⊢ Ⅎ 𝑤 ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 63 |  | nfv | ⊢ Ⅎ 𝑤 sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ | 
						
							| 64 | 60 42 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 65 | 64 | nfrn | ⊢ Ⅎ 𝑥 ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ* | 
						
							| 67 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 68 | 65 66 67 | nfsup | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) | 
						
							| 69 | 68 45 | nfel | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ | 
						
							| 70 | 47 | mpteq2dv | ⊢ ( 𝑥  =  𝑤  →  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) )  =  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 71 | 70 | rneqd | ⊢ ( 𝑥  =  𝑤  →  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) )  =  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 72 | 71 | supeq1d | ⊢ ( 𝑥  =  𝑤  →  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 73 | 72 | eleq1d | ⊢ ( 𝑥  =  𝑤  →  ( sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 74 | 61 62 63 69 73 | cbvrabw | ⊢ { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 75 | 74 | a1i | ⊢ ( 𝑖  =  𝑘  →  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 77 | 76 | iineq1d | ⊢ ( 𝑖  =  𝑘  →  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  =  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 78 | 77 | eleq2d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ↔  𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 ) ) ) | 
						
							| 79 | 76 | mpteq1d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) )  =  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 80 | 79 | rneqd | ⊢ ( 𝑖  =  𝑘  →  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) )  =  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 81 | 80 | supeq1d | ⊢ ( 𝑖  =  𝑘  →  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 82 | 81 | eleq1d | ⊢ ( 𝑖  =  𝑘  →  ( sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 83 | 78 82 | anbi12d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∧  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ )  ↔  ( 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 )  ∧  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) ) | 
						
							| 84 | 83 | rabbidva2 | ⊢ ( 𝑖  =  𝑘  →  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 85 | 75 84 | eqtrd | ⊢ ( 𝑖  =  𝑘  →  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 86 | 85 | cbvmptv | ⊢ ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } )  =  ( 𝑘  ∈  𝑍  ↦  { 𝑤  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑘 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 87 |  | fveq2 | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) | 
						
							| 88 | 87 | mpteq2dv | ⊢ ( 𝑦  =  𝑤  →  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) )  =  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ) | 
						
							| 89 | 88 | rneqd | ⊢ ( 𝑦  =  𝑤  →  ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) )  =  ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ) | 
						
							| 90 | 89 | supeq1d | ⊢ ( 𝑦  =  𝑤  →  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 91 | 90 | cbvmptv | ⊢ ( 𝑦  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( 𝐹 ‘ 𝑝 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 93 | 92 | dmeqd | ⊢ ( 𝑝  =  𝑞  →  dom  ( 𝐹 ‘ 𝑝 )  =  dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 94 | 93 | cbviinv | ⊢ ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  =  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 ) | 
						
							| 95 | 94 | eleq2i | ⊢ ( 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ↔  𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 96 |  | nfcv | ⊢ Ⅎ 𝑞 ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) | 
						
							| 97 |  | nfcv | ⊢ Ⅎ 𝑝 ( 𝐹 ‘ 𝑞 ) | 
						
							| 98 |  | nfcv | ⊢ Ⅎ 𝑝 𝑥 | 
						
							| 99 | 97 98 | nffv | ⊢ Ⅎ 𝑝 ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) | 
						
							| 100 | 92 | fveq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) | 
						
							| 101 | 96 99 100 | cbvmpt | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) )  =  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) | 
						
							| 102 | 101 | rneqi | ⊢ ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) )  =  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) | 
						
							| 103 | 102 | supeq1i | ⊢ sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) | 
						
							| 104 | 103 | eleq1i | ⊢ ( sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 105 | 95 104 | anbi12i | ⊢ ( ( 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∧  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ )  ↔  ( 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∧  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 106 | 105 | rabbia2 | ⊢ { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 107 | 106 | mpteq2i | ⊢ ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } )  =  ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 108 | 107 | fveq1i | ⊢ ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  =  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 ) | 
						
							| 109 | 92 | fveq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 )  =  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 110 | 109 | cbvmptv | ⊢ ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) )  =  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 111 | 110 | rneqi | ⊢ ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) )  =  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | 
						
							| 112 | 111 | supeq1i | ⊢ sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) | 
						
							| 113 | 108 112 | mpteq12i | ⊢ ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 114 | 91 113 | eqtri | ⊢ ( 𝑦  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 115 | 114 | a1i | ⊢ ( 𝑙  =  𝑘  →  ( 𝑦  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 116 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  =  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑘 ) ) | 
						
							| 117 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( ℤ≥ ‘ 𝑙 )  =  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 118 | 117 | mpteq1d | ⊢ ( 𝑙  =  𝑘  →  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) )  =  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 119 | 118 | rneqd | ⊢ ( 𝑙  =  𝑘  →  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) )  =  ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ) | 
						
							| 120 | 119 | supeq1d | ⊢ ( 𝑙  =  𝑘  →  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 121 | 116 120 | mpteq12dv | ⊢ ( 𝑙  =  𝑘  →  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑘 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 122 | 115 121 | eqtrd | ⊢ ( 𝑙  =  𝑘  →  ( 𝑦  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑘 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 123 | 122 | cbvmptv | ⊢ ( 𝑙  ∈  𝑍  ↦  ( 𝑦  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑝  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑝 )  ∣  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑙 )  ↦  sup ( ran  ( 𝑝  ∈  ( ℤ≥ ‘ 𝑙 )  ↦  ( ( 𝐹 ‘ 𝑝 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝑤  ∈  ( ( 𝑖  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑞  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑞 )  ∣  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑖 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) ‘ 𝑘 )  ↦  sup ( ran  ( 𝑞  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 124 | 3 4 5 6 52 59 86 123 | smflimsuplem8 | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |