| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsupmpt.p | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 2 |  | smflimsupmpt.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 3 |  | smflimsupmpt.n | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 4 |  | smflimsupmpt.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | smflimsupmpt.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 |  | smflimsupmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 7 |  | smflimsupmpt.b | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 ) | 
						
							| 8 |  | smflimsupmpt.f | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 9 |  | smflimsupmpt.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ } | 
						
							| 10 |  | smflimsupmpt.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) ) | 
						
							| 12 | 9 | a1i | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ } ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑚 𝑛  ∈  𝑍 | 
						
							| 15 | 1 14 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 17 | 5 | uztrn2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 18 | 17 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  𝑍 ) | 
						
							| 20 | 8 | elexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 22 | 21 | fvmpt2 | ⊢ ( ( 𝑚  ∈  𝑍  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  V )  →  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 23 | 19 20 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 24 | 23 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑥 𝑚  ∈  𝑍 | 
						
							| 26 | 2 25 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑚  ∈  𝑍 ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 28 | 7 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑊 ) | 
						
							| 29 | 26 27 28 | dmmptdf | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 30 | 24 29 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝐴  =  dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 31 | 16 18 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐴  =  dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 32 | 15 31 | iineq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 33 | 3 32 | iuneq2df | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  =  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  =  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 35 | 13 34 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 36 | 35 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 37 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ↔  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 38 | 37 | biimpi | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑚 𝑥 | 
						
							| 42 |  | nfii1 | ⊢ Ⅎ 𝑚 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 | 
						
							| 43 | 41 42 | nfel | ⊢ Ⅎ 𝑚 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 | 
						
							| 44 | 1 14 43 | nf3an | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 45 | 23 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 46 | 16 18 45 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 47 | 46 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) ) | 
						
							| 48 |  | eliinid | ⊢ ( ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 49 | 48 | 3ad2antl3 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 50 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 51 | 18 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 52 | 50 51 49 7 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐵  ∈  𝑊 ) | 
						
							| 53 | 27 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 54 | 49 52 53 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 55 | 47 54 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 56 | 44 55 | mpteq2da | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  𝐵 ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  𝐵 ) ) ) | 
						
							| 58 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 59 | 5 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 60 | 59 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑛  ∈  ℤ ) | 
						
							| 61 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 62 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  𝑍 )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 63 | 51 62 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 64 | 44 58 60 5 61 62 63 | limsupequzmpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 65 | 14 | nfci | ⊢ Ⅎ 𝑚 𝑍 | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑛 ) | 
						
							| 67 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑛  ∈  𝑍 ) | 
						
							| 68 | 60 | uzidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 69 | 44 65 66 5 61 67 68 52 | limsupequzmpt2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  =  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  𝐵 ) ) ) | 
						
							| 70 | 57 64 69 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍  ∧  𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) | 
						
							| 71 | 70 | 3exp | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  →  ( 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) ) ) | 
						
							| 72 | 3 40 71 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( ∃ 𝑛  ∈  𝑍 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) ) | 
						
							| 74 | 39 73 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) | 
						
							| 75 | 74 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) ) | 
						
							| 76 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 77 | 75 76 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 78 | 36 77 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 79 | 78 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) ) | 
						
							| 80 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) )  →  𝜑 ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ) | 
						
							| 82 | 33 | eqcomd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  =  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) )  →  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  =  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 84 | 81 83 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 85 | 84 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 86 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 87 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 88 | 74 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 89 | 88 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 90 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 91 | 89 90 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) | 
						
							| 92 | 87 91 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) ) | 
						
							| 93 | 80 85 86 92 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) ) | 
						
							| 94 | 93 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ ) ) ) | 
						
							| 95 | 79 94 | impbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ )  ↔  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) ) | 
						
							| 96 | 2 95 | rabbida3 | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 97 | 12 96 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 98 | 9 | eleq2i | ⊢ ( 𝑥  ∈  𝐷  ↔  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ } ) | 
						
							| 99 | 98 | biimpi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ } ) | 
						
							| 100 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  ∈  ℝ }  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 101 | 99 100 | syl | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝐴 ) | 
						
							| 102 | 101 88 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 103 | 2 97 102 | mpteq12da | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  𝐵 ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 104 | 11 103 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 105 |  | nfmpt1 | ⊢ Ⅎ 𝑚 ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 106 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 107 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 108 | 106 107 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 109 | 1 8 | fmptd2f | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 110 |  | eqid | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 111 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 112 | 105 108 4 5 6 109 110 111 | smflimsup | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( ( 𝑚  ∈  𝑍  ↦  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 113 | 104 112 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |