Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsupmpt.p |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
smflimsupmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
3 |
|
smflimsupmpt.n |
⊢ Ⅎ 𝑛 𝜑 |
4 |
|
smflimsupmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
smflimsupmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
smflimsupmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
7 |
|
smflimsupmpt.b |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
8 |
|
smflimsupmpt.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
9 |
|
smflimsupmpt.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } |
10 |
|
smflimsupmpt.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
12 |
9
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
15 |
1 14
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
16 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
17 |
5
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
20 |
8
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
21
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
23 |
19 20 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
24 |
23
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
25 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ 𝑍 |
26 |
2 25
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
28 |
7
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
29 |
26 27 28
|
dmmptdf |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
30 |
24 29
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
31 |
16 18 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
32 |
15 31
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
33 |
3 32
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
35 |
13 34
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
36 |
35
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
37 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
38 |
37
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
40 |
|
nfv |
⊢ Ⅎ 𝑛 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
42 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
43 |
41 42
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
44 |
1 14 43
|
nf3an |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
45 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
46 |
16 18 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
47 |
46
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
48 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
49 |
48
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
50 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
51 |
18
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
52 |
50 51 49 7
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑊 ) |
53 |
27
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
54 |
49 52 53
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
55 |
47 54
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = 𝐵 ) |
56 |
44 55
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) ) |
58 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑀 ∈ ℤ ) |
59 |
5
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
60 |
59
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ ) |
61 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
62 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
63 |
51 62
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
64 |
44 58 60 5 61 62 63
|
limsupequzmpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
65 |
14
|
nfci |
⊢ Ⅎ 𝑚 𝑍 |
66 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑛 ) |
67 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ 𝑍 ) |
68 |
60
|
uzidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
69 |
44 65 66 5 61 67 68 52
|
limsupequzmpt2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) ) |
70 |
57 64 69
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
71 |
70
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
72 |
3 40 71
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
74 |
39 73
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
76 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
77 |
75 76
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
78 |
36 77
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
79 |
78
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) ) |
80 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝜑 ) |
81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
82 |
33
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
84 |
81 83
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
85 |
84
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
86 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
87 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
88 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
89 |
88
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
90 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
91 |
89 90
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
92 |
87 91
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) |
93 |
80 85 86 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) |
94 |
93
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) ) |
95 |
79 94
|
impbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) ) |
96 |
2 95
|
rabbida3 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
97 |
12 96
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
98 |
9
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
99 |
98
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
100 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
101 |
99 100
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
102 |
101 88
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
103 |
2 97 102
|
mpteq12da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
104 |
11 103
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
105 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
106 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
107 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
108 |
106 107
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
109 |
1 8
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
110 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
111 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
112 |
105 108 4 5 6 109 110 111
|
smflimsup |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
113 |
104 112
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |