Metamath Proof Explorer


Theorem smflimsupmpt

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . A can contain m as a free variable, in other words it can be thought of as an indexed collection A ( m ) . B can be thought of as a collection with two indices B ( m , x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsupmpt.p 𝑚 𝜑
smflimsupmpt.x 𝑥 𝜑
smflimsupmpt.n 𝑛 𝜑
smflimsupmpt.m ( 𝜑𝑀 ∈ ℤ )
smflimsupmpt.z 𝑍 = ( ℤ𝑀 )
smflimsupmpt.s ( 𝜑𝑆 ∈ SAlg )
smflimsupmpt.b ( ( 𝜑𝑚𝑍𝑥𝐴 ) → 𝐵𝑊 )
smflimsupmpt.f ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smflimsupmpt.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ }
smflimsupmpt.g 𝐺 = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) )
Assertion smflimsupmpt ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smflimsupmpt.p 𝑚 𝜑
2 smflimsupmpt.x 𝑥 𝜑
3 smflimsupmpt.n 𝑛 𝜑
4 smflimsupmpt.m ( 𝜑𝑀 ∈ ℤ )
5 smflimsupmpt.z 𝑍 = ( ℤ𝑀 )
6 smflimsupmpt.s ( 𝜑𝑆 ∈ SAlg )
7 smflimsupmpt.b ( ( 𝜑𝑚𝑍𝑥𝐴 ) → 𝐵𝑊 )
8 smflimsupmpt.f ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
9 smflimsupmpt.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ }
10 smflimsupmpt.g 𝐺 = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) )
11 10 a1i ( 𝜑𝐺 = ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ) )
12 9 a1i ( 𝜑𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
13 simpr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
14 nfv 𝑚 𝑛𝑍
15 1 14 nfan 𝑚 ( 𝜑𝑛𝑍 )
16 simpll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
17 5 uztrn2 ( ( 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
18 17 adantll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
19 simpr ( ( 𝜑𝑚𝑍 ) → 𝑚𝑍 )
20 8 elexd ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ V )
21 eqid ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) = ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
22 21 fvmpt2 ( ( 𝑚𝑍 ∧ ( 𝑥𝐴𝐵 ) ∈ V ) → ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = ( 𝑥𝐴𝐵 ) )
23 19 20 22 syl2anc ( ( 𝜑𝑚𝑍 ) → ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = ( 𝑥𝐴𝐵 ) )
24 23 dmeqd ( ( 𝜑𝑚𝑍 ) → dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥𝐴𝐵 ) )
25 nfv 𝑥 𝑚𝑍
26 2 25 nfan 𝑥 ( 𝜑𝑚𝑍 )
27 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
28 7 3expa ( ( ( 𝜑𝑚𝑍 ) ∧ 𝑥𝐴 ) → 𝐵𝑊 )
29 26 27 28 dmmptdf ( ( 𝜑𝑚𝑍 ) → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
30 24 29 eqtr2d ( ( 𝜑𝑚𝑍 ) → 𝐴 = dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
31 16 18 30 syl2anc ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝐴 = dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
32 15 31 iineq2d ( ( 𝜑𝑛𝑍 ) → 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
33 3 32 iuneq2df ( 𝜑 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
34 33 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
35 13 34 eleqtrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
36 35 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
37 eliun ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ↔ ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
38 37 biimpi ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
39 38 adantl ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
40 nfv 𝑛 ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) )
41 nfcv 𝑚 𝑥
42 nfii1 𝑚 𝑚 ∈ ( ℤ𝑛 ) 𝐴
43 41 42 nfel 𝑚 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴
44 1 14 43 nf3an 𝑚 ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
45 23 fveq1d ( ( 𝜑𝑚𝑍 ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
46 16 18 45 syl2anc ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
47 46 3adantl3 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
48 eliinid ( ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴𝑚 ∈ ( ℤ𝑛 ) ) → 𝑥𝐴 )
49 48 3ad2antl3 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑥𝐴 )
50 simpl1 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
51 18 3adantl3 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
52 50 51 49 7 syl3anc ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝐵𝑊 )
53 27 fvmpt2 ( ( 𝑥𝐴𝐵𝑊 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
54 49 52 53 syl2anc ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
55 47 54 eqtrd ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = 𝐵 )
56 44 55 mpteq2da ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) )
57 56 fveq2d ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) ) )
58 4 3ad2ant1 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑀 ∈ ℤ )
59 5 eluzelz2 ( 𝑛𝑍𝑛 ∈ ℤ )
60 59 3ad2ant2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛 ∈ ℤ )
61 eqid ( ℤ𝑛 ) = ( ℤ𝑛 )
62 fvexd ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚𝑍 ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V )
63 51 62 syldan ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V )
64 44 58 60 5 61 62 63 limsupequzmpt ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
65 14 nfci 𝑚 𝑍
66 nfcv 𝑚 ( ℤ𝑛 )
67 simp2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛𝑍 )
68 60 uzidd ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛 ∈ ( ℤ𝑛 ) )
69 44 65 66 5 61 67 68 52 limsupequzmpt2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) ) )
70 57 64 69 3eqtr4d ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) )
71 70 3exp ( 𝜑 → ( 𝑛𝑍 → ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ) ) )
72 3 40 71 rexlimd ( 𝜑 → ( ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ) )
73 72 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ) )
74 39 73 mpd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) )
75 74 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) )
76 simprr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ )
77 75 76 eqeltrd ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
78 36 77 jca ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) )
79 78 ex ( 𝜑 → ( ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) )
80 simpl ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝜑 )
81 simpr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
82 33 eqcomd ( 𝜑 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
83 82 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
84 81 83 eleqtrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
85 84 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
86 simprr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
87 simp2 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
88 74 eqcomd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
89 88 3adant3 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
90 simp3 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
91 89 90 eqeltrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ )
92 87 91 jca ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) )
93 80 85 86 92 syl3anc ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) )
94 93 ex ( 𝜑 → ( ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) )
95 79 94 impbid ( 𝜑 → ( ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ↔ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) )
96 2 95 rabbida3 ( 𝜑 → { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } )
97 12 96 eqtrd ( 𝜑𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } )
98 9 eleq2i ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
99 98 biimpi ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
100 rabidim1 ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
101 99 100 syl ( 𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
102 101 88 sylan2 ( ( 𝜑𝑥𝐷 ) → ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
103 2 97 102 mpteq12da ( 𝜑 → ( 𝑥𝐷 ↦ ( lim sup ‘ ( 𝑚𝑍𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) )
104 11 103 eqtrd ( 𝜑𝐺 = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) )
105 nfmpt1 𝑚 ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
106 nfcv 𝑥 𝑍
107 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
108 106 107 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
109 1 8 fmptd2f ( 𝜑 → ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
110 eqid { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
111 eqid ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
112 105 108 4 5 6 109 110 111 smflimsup ( 𝜑 → ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) )
113 104 112 eqeltrd ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )