| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfliminflem.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | smfliminflem.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfliminflem.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfliminflem.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfliminflem.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 6 |  | smfliminflem.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 9 | 5 8 | eqsstri | ⊢ 𝐷  ⊆  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  𝐷 ) | 
						
							| 11 | 9 10 | sselid | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 12 |  | eqid | ⊢ ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 13 | 2 12 | allbutfi | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ↔  ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 14 | 11 13 | sylib | ⊢ ( 𝑥  ∈  𝐷  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 17 |  | nfra1 | ⊢ Ⅎ 𝑚 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 18 | 16 17 | nfan | ⊢ Ⅎ 𝑚 ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 19 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑍  ∈  V ) | 
						
							| 21 | 2 | eluzelz2 | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℤ ) | 
						
							| 22 | 21 | zred | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℝ ) | 
						
							| 23 | 22 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 24 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  𝜑 ) | 
						
							| 25 |  | elinel1 | ⊢ ( 𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 27 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 28 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 29 | 26 27 28 | smff | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 30 | 24 25 29 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( 𝑛  ∈  𝑍  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 32 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 33 | 21 | adantr | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑛  ∈  ℤ ) | 
						
							| 34 | 2 25 | eluzelz2d | ⊢ ( 𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) )  →  𝑚  ∈  ℤ ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 36 | 22 | rexrd | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ℝ* ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑛  ∈  ℝ* ) | 
						
							| 38 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  +∞  ∈  ℝ* ) | 
						
							| 40 |  | elinel2 | ⊢ ( 𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) )  →  𝑚  ∈  ( 𝑛 [,) +∞ ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑚  ∈  ( 𝑛 [,) +∞ ) ) | 
						
							| 42 | 37 39 41 | icogelbd | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑛  ≤  𝑚 ) | 
						
							| 43 | 32 33 35 42 | eluzd | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 44 | 43 | adantlr | ⊢ ( ( ( 𝑛  ∈  𝑍  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 45 |  | rspa | ⊢ ( ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 46 | 31 44 45 | syl2anc | ⊢ ( ( ( 𝑛  ∈  𝑍  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 47 | 46 | adantlll | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 48 | 30 47 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  ∧  𝑚  ∈  ( 𝑍  ∩  ( 𝑛 [,) +∞ ) ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 49 | 18 20 23 48 | liminfval4 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 50 | 49 | rexlimdva2 | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 52 | 15 51 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 53 | 52 | xnegeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  -𝑒 ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 54 | 19 | mptex | ⊢ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 55 | 54 | limsupcli | ⊢ ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ* | 
						
							| 56 | 55 | xnegnegi | ⊢ -𝑒 -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  -𝑒 -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 58 | 53 57 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 59 | 5 | reqabi | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 60 | 59 | simprbi | ⊢ ( 𝑥  ∈  𝐷  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 62 | 61 | rexnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  -𝑒 ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  - ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 63 | 58 62 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  - ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 64 | 61 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  - ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 65 | 63 64 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 66 | 65 | rexnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  - ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 67 | 52 66 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  - ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 68 | 67 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  𝐷  ↦  - ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 69 | 7 68 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐷  ↦  - ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 70 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 71 | 21 32 | uzn0d | ⊢ ( 𝑛  ∈  𝑍  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 72 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 73 | 72 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 74 | 73 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 75 | 74 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 76 |  | iinexg | ⊢ ( ( ( ℤ≥ ‘ 𝑛 )  ≠  ∅  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 77 | 71 75 76 | syl2anc | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 78 | 77 | rgen | ⊢ ∀ 𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 79 |  | iunexg | ⊢ ( ( 𝑍  ∈  V  ∧  ∀ 𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V )  →  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 80 | 19 78 79 | mp2an | ⊢ ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 81 | 80 9 | ssexi | ⊢ 𝐷  ∈  V | 
						
							| 82 | 81 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 83 | 5 | a1i | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 84 | 13 | biimpi | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  →  ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 85 | 50 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  𝑍 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 86 | 84 85 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 87 | 55 | a1i | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ* ) | 
						
							| 88 |  | simpl | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 89 |  | simpr | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 90 | 88 89 | eqeltrrd | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 91 |  | xnegrecl2 | ⊢ ( ( ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ*  ∧  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 92 | 87 90 91 | syl2anc | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 93 |  | simpl | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 94 |  | xnegrecl | ⊢ ( ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  →  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 96 | 93 95 | eqeltrd | ⊢ ( ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∧  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ )  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 97 | 92 96 | impbida | ⊢ ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  →  ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 98 | 86 97 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ ) ) | 
						
							| 99 | 98 | rabbidva | ⊢ ( 𝜑  →  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 100 | 83 99 | eqtrd | ⊢ ( 𝜑  →  𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } ) | 
						
							| 101 | 70 100 | mpteq1df | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 102 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 103 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 104 |  | negex | ⊢ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V | 
						
							| 105 | 104 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  V ) | 
						
							| 106 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑚  ∈  𝑍 ) | 
						
							| 107 | 73 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 108 | 29 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  ∧  𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 109 | 29 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 110 | 109 27 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 111 | 106 26 107 108 110 | smfneg | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝑥  ∈  dom  ( 𝐹 ‘ 𝑚 )  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 112 |  | eqid | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 113 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 114 | 102 70 103 1 2 3 105 111 112 113 | smflimsupmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 115 | 101 114 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 116 | 70 3 82 65 115 | smfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  - ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 117 | 69 116 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |