| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfliminflem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
smfliminflem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smfliminflem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smfliminflem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smfliminflem.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
| 6 |
|
smfliminflem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 9 |
5 8
|
eqsstri |
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 10 |
|
id |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ 𝐷 ) |
| 11 |
9 10
|
sselid |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 12 |
|
eqid |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 13 |
2 12
|
allbutfi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 14 |
11 13
|
sylib |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 17 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) |
| 18 |
16 17
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 19 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
| 20 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝑍 ∈ V ) |
| 21 |
2
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 22 |
21
|
zred |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ ) |
| 23 |
22
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝑛 ∈ ℝ ) |
| 24 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝜑 ) |
| 25 |
|
elinel1 |
⊢ ( 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) → 𝑚 ∈ 𝑍 ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 27 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 28 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 29 |
26 27 28
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 30 |
24 25 29
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 32 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 33 |
21
|
adantr |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑛 ∈ ℤ ) |
| 34 |
2 25
|
eluzelz2d |
⊢ ( 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) → 𝑚 ∈ ℤ ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑚 ∈ ℤ ) |
| 36 |
22
|
rexrd |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ* ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑛 ∈ ℝ* ) |
| 38 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 39 |
38
|
a1i |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → +∞ ∈ ℝ* ) |
| 40 |
|
elinel2 |
⊢ ( 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) → 𝑚 ∈ ( 𝑛 [,) +∞ ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑚 ∈ ( 𝑛 [,) +∞ ) ) |
| 42 |
37 39 41
|
icogelbd |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑛 ≤ 𝑚 ) |
| 43 |
32 33 35 42
|
eluzd |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 44 |
43
|
adantlr |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 45 |
|
rspa |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 46 |
31 44 45
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 47 |
46
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 48 |
30 47
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 49 |
18 20 23 48
|
liminfval4 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 50 |
49
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 52 |
15 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 53 |
52
|
xnegeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → -𝑒 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 54 |
19
|
mptex |
⊢ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ V |
| 55 |
54
|
limsupcli |
⊢ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ* |
| 56 |
55
|
xnegnegi |
⊢ -𝑒 -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → -𝑒 -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 58 |
53 57
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 59 |
5
|
reqabi |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
| 60 |
59
|
simprbi |
⊢ ( 𝑥 ∈ 𝐷 → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 62 |
61
|
rexnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → -𝑒 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = - ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 63 |
58 62
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → - ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 64 |
61
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → - ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 65 |
63 64
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 66 |
65
|
rexnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = - ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 67 |
52 66
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = - ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 68 |
67
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ - ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 69 |
7 68
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ - ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 70 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 71 |
21 32
|
uzn0d |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 72 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 73 |
72
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 74 |
73
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 75 |
74
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 76 |
|
iinexg |
⊢ ( ( ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 77 |
71 75 76
|
syl2anc |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 78 |
77
|
rgen |
⊢ ∀ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 79 |
|
iunexg |
⊢ ( ( 𝑍 ∈ V ∧ ∀ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 80 |
19 78 79
|
mp2an |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 81 |
80 9
|
ssexi |
⊢ 𝐷 ∈ V |
| 82 |
81
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 83 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
| 84 |
13
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 85 |
50
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 86 |
84 85
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 87 |
55
|
a1i |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ* ) |
| 88 |
|
simpl |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 89 |
|
simpr |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 90 |
88 89
|
eqeltrrd |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 91 |
|
xnegrecl2 |
⊢ ( ( ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ* ∧ -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 92 |
87 90 91
|
syl2anc |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 93 |
|
simpl |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 94 |
|
xnegrecl |
⊢ ( ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ → -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 95 |
94
|
adantl |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 96 |
93 95
|
eqeltrd |
⊢ ( ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∧ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 97 |
92 96
|
impbida |
⊢ ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) → ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
| 98 |
86 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
| 99 |
98
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
| 100 |
83 99
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
| 101 |
70 100
|
mpteq1df |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 102 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
| 103 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 104 |
|
negex |
⊢ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V |
| 105 |
104
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 106 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) |
| 107 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 108 |
29
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 109 |
29
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 110 |
109 27
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 111 |
106 26 107 108 110
|
smfneg |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 112 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
| 113 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 114 |
102 70 103 1 2 3 105 111 112 113
|
smflimsupmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 115 |
101 114
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 116 |
70 3 82 65 115
|
smfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ - ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ - ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 117 |
69 116
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |