| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfliminf.n | ⊢ Ⅎ 𝑚 𝐹 | 
						
							| 2 |  | smfliminf.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 3 |  | smfliminf.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | smfliminf.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | smfliminf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 6 |  | smfliminf.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfliminf.d | ⊢ 𝐷  =  { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 8 |  | smfliminf.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑖 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑛 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑛  =  𝑖  →  ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 12 | 11 | iineq1d | ⊢ ( 𝑛  =  𝑖  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑚 ) | 
						
							| 14 | 13 | nfdm | ⊢ Ⅎ 𝑘 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑚 𝑘 | 
						
							| 16 | 1 15 | nffv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑘 ) | 
						
							| 17 | 16 | nfdm | ⊢ Ⅎ 𝑚 dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑚  =  𝑘  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 19 | 18 | dmeqd | ⊢ ( 𝑚  =  𝑘  →  dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 20 | 14 17 19 | cbviin | ⊢ ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝑛  =  𝑖  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 22 | 12 21 | eqtrd | ⊢ ( 𝑛  =  𝑖  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 23 | 9 10 22 | cbviun | ⊢ ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  =  ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 24 | 23 | rabeqi | ⊢ { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑥  ∈  ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑖 ) | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑥 𝑘 | 
						
							| 28 | 2 27 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑘 ) | 
						
							| 29 | 28 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 30 | 26 29 | nfiin | ⊢ Ⅎ 𝑥 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 31 | 25 30 | nfiun | ⊢ Ⅎ 𝑥 ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑦 ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑦 ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑥 lim inf | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 36 | 28 35 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) | 
						
							| 37 | 25 36 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 38 | 34 37 | nffv | ⊢ Ⅎ 𝑥 ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ | 
						
							| 40 | 38 39 | nfel | ⊢ Ⅎ 𝑥 ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) )  ∈  ℝ | 
						
							| 41 |  | nfv | ⊢ Ⅎ 𝑚 𝑥  =  𝑦 | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑥  =  𝑦  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 44 | 41 43 | mpteq2da | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑚 𝑦 | 
						
							| 47 | 16 46 | nffv | ⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) | 
						
							| 48 | 18 | fveq1d | ⊢ ( 𝑚  =  𝑘  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 49 | 45 47 48 | cbvmpt | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) | 
						
							| 51 | 44 50 | eqtrd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  =  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) | 
						
							| 53 | 52 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ  ↔  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) )  ∈  ℝ ) ) | 
						
							| 54 | 31 32 33 40 53 | cbvrabw | ⊢ { 𝑥  ∈  ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ }  =  { 𝑦  ∈  ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 )  ∣  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) )  ∈  ℝ } | 
						
							| 55 | 7 24 54 | 3eqtri | ⊢ 𝐷  =  { 𝑦  ∈  ∪  𝑖  ∈  𝑍 ∩  𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) dom  ( 𝐹 ‘ 𝑘 )  ∣  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) )  ∈  ℝ } | 
						
							| 56 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∪  𝑛  ∈  𝑍 ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) )  ∈  ℝ } | 
						
							| 57 | 7 56 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 58 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑦 ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) | 
						
							| 60 | 57 58 59 38 52 | cbvmptf | ⊢ ( 𝑥  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) )  =  ( 𝑦  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) | 
						
							| 61 | 8 60 | eqtri | ⊢ 𝐺  =  ( 𝑦  ∈  𝐷  ↦  ( lim inf ‘ ( 𝑘  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) | 
						
							| 62 | 3 4 5 6 55 61 | smfliminflem | ⊢ ( 𝜑  →  𝐺  ∈  ( SMblFn ‘ 𝑆 ) ) |