Metamath Proof Explorer


Theorem smfliminf

Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses smfliminf.n 𝑚 𝐹
smfliminf.x 𝑥 𝐹
smfliminf.m ( 𝜑𝑀 ∈ ℤ )
smfliminf.z 𝑍 = ( ℤ𝑀 )
smfliminf.s ( 𝜑𝑆 ∈ SAlg )
smfliminf.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smfliminf.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
smfliminf.g 𝐺 = ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
Assertion smfliminf ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfliminf.n 𝑚 𝐹
2 smfliminf.x 𝑥 𝐹
3 smfliminf.m ( 𝜑𝑀 ∈ ℤ )
4 smfliminf.z 𝑍 = ( ℤ𝑀 )
5 smfliminf.s ( 𝜑𝑆 ∈ SAlg )
6 smfliminf.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
7 smfliminf.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
8 smfliminf.g 𝐺 = ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) )
9 nfcv 𝑖 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 )
10 nfcv 𝑛 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
11 fveq2 ( 𝑛 = 𝑖 → ( ℤ𝑛 ) = ( ℤ𝑖 ) )
12 11 iineq1d ( 𝑛 = 𝑖 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) )
13 nfcv 𝑘 ( 𝐹𝑚 )
14 13 nfdm 𝑘 dom ( 𝐹𝑚 )
15 nfcv 𝑚 𝑘
16 1 15 nffv 𝑚 ( 𝐹𝑘 )
17 16 nfdm 𝑚 dom ( 𝐹𝑘 )
18 fveq2 ( 𝑚 = 𝑘 → ( 𝐹𝑚 ) = ( 𝐹𝑘 ) )
19 18 dmeqd ( 𝑚 = 𝑘 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑘 ) )
20 14 17 19 cbviin 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) = 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
21 20 a1i ( 𝑛 = 𝑖 𝑚 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑚 ) = 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) )
22 12 21 eqtrd ( 𝑛 = 𝑖 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) )
23 9 10 22 cbviun 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
24 23 rabeqi { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
25 nfcv 𝑥 𝑍
26 nfcv 𝑥 ( ℤ𝑖 )
27 nfcv 𝑥 𝑘
28 2 27 nffv 𝑥 ( 𝐹𝑘 )
29 28 nfdm 𝑥 dom ( 𝐹𝑘 )
30 26 29 nfiin 𝑥 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
31 25 30 nfiun 𝑥 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
32 nfcv 𝑦 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 )
33 nfv 𝑦 ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ
34 nfcv 𝑥 lim inf
35 nfcv 𝑥 𝑦
36 28 35 nffv 𝑥 ( ( 𝐹𝑘 ) ‘ 𝑦 )
37 25 36 nfmpt 𝑥 ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) )
38 34 37 nffv 𝑥 ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) )
39 nfcv 𝑥
40 38 39 nfel 𝑥 ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ
41 nfv 𝑚 𝑥 = 𝑦
42 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
43 42 adantr ( ( 𝑥 = 𝑦𝑚𝑍 ) → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
44 41 43 mpteq2da ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
45 nfcv 𝑘 ( ( 𝐹𝑚 ) ‘ 𝑦 )
46 nfcv 𝑚 𝑦
47 16 46 nffv 𝑚 ( ( 𝐹𝑘 ) ‘ 𝑦 )
48 18 fveq1d ( 𝑚 = 𝑘 → ( ( 𝐹𝑚 ) ‘ 𝑦 ) = ( ( 𝐹𝑘 ) ‘ 𝑦 ) )
49 45 47 48 cbvmpt ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) )
50 49 a1i ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) )
51 44 50 eqtrd ( 𝑥 = 𝑦 → ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) )
52 51 fveq2d ( 𝑥 = 𝑦 → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) )
53 52 eleq1d ( 𝑥 = 𝑦 → ( ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ ) )
54 31 32 33 40 53 cbvrabw { 𝑥 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑦 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) ∣ ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ }
55 7 24 54 3eqtri 𝐷 = { 𝑦 𝑖𝑍 𝑘 ∈ ( ℤ𝑖 ) dom ( 𝐹𝑘 ) ∣ ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ }
56 nfrab1 𝑥 { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
57 7 56 nfcxfr 𝑥 𝐷
58 nfcv 𝑦 𝐷
59 nfcv 𝑦 ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) )
60 57 58 59 38 52 cbvmptf ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦𝐷 ↦ ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) )
61 8 60 eqtri 𝐺 = ( 𝑦𝐷 ↦ ( lim inf ‘ ( 𝑘𝑍 ↦ ( ( 𝐹𝑘 ) ‘ 𝑦 ) ) ) )
62 3 4 5 6 55 61 smfliminflem ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )