Step |
Hyp |
Ref |
Expression |
1 |
|
smfliminf.n |
⊢ Ⅎ 𝑚 𝐹 |
2 |
|
smfliminf.x |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
smfliminf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
smfliminf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
smfliminf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
6 |
|
smfliminf.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
7 |
|
smfliminf.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
8 |
|
smfliminf.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑖 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑛 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
11 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑖 ) ) |
12 |
11
|
iineq1d |
⊢ ( 𝑛 = 𝑖 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑚 ) |
14 |
13
|
nfdm |
⊢ Ⅎ 𝑘 dom ( 𝐹 ‘ 𝑚 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑘 |
16 |
1 15
|
nffv |
⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑘 ) |
17 |
16
|
nfdm |
⊢ Ⅎ 𝑚 dom ( 𝐹 ‘ 𝑘 ) |
18 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
19 |
18
|
dmeqd |
⊢ ( 𝑚 = 𝑘 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑘 ) ) |
20 |
14 17 19
|
cbviin |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
21 |
20
|
a1i |
⊢ ( 𝑛 = 𝑖 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ) |
22 |
12 21
|
eqtrd |
⊢ ( 𝑛 = 𝑖 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ) |
23 |
9 10 22
|
cbviun |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
24 |
23
|
rabeqi |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑖 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
28 |
2 27
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑘 ) |
29 |
28
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝐹 ‘ 𝑘 ) |
30 |
26 29
|
nfiin |
⊢ Ⅎ 𝑥 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
31 |
25 30
|
nfiun |
⊢ Ⅎ 𝑥 ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑦 ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) |
33 |
|
nfv |
⊢ Ⅎ 𝑦 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ |
34 |
|
nfcv |
⊢ Ⅎ 𝑥 lim inf |
35 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
36 |
28 35
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) |
37 |
25 36
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
38 |
34 37
|
nffv |
⊢ Ⅎ 𝑥 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
40 |
38 39
|
nfel |
⊢ Ⅎ 𝑥 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ |
41 |
|
nfv |
⊢ Ⅎ 𝑚 𝑥 = 𝑦 |
42 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
44 |
41 43
|
mpteq2da |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) |
46 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑦 |
47 |
16 46
|
nffv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) |
48 |
18
|
fveq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
49 |
45 47 48
|
cbvmpt |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
50 |
49
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) |
51 |
44 50
|
eqtrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) |
53 |
52
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ↔ ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ ) ) |
54 |
31 32 33 40 53
|
cbvrabw |
⊢ { 𝑥 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑦 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ∣ ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ } |
55 |
7 24 54
|
3eqtri |
⊢ 𝐷 = { 𝑦 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑘 ) ∣ ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ∈ ℝ } |
56 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
57 |
7 56
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
58 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
59 |
|
nfcv |
⊢ Ⅎ 𝑦 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
60 |
57 58 59 38 52
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) |
61 |
8 60
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) ) ) |
62 |
3 4 5 6 55 61
|
smfliminflem |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |