Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfliminf.n | |
|
smfliminf.x | |
||
smfliminf.m | |
||
smfliminf.z | |
||
smfliminf.s | |
||
smfliminf.f | |
||
smfliminf.d | |
||
smfliminf.g | |
||
Assertion | smfliminf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfliminf.n | |
|
2 | smfliminf.x | |
|
3 | smfliminf.m | |
|
4 | smfliminf.z | |
|
5 | smfliminf.s | |
|
6 | smfliminf.f | |
|
7 | smfliminf.d | |
|
8 | smfliminf.g | |
|
9 | nfcv | |
|
10 | nfcv | |
|
11 | fveq2 | |
|
12 | 11 | iineq1d | |
13 | nfcv | |
|
14 | 13 | nfdm | |
15 | nfcv | |
|
16 | 1 15 | nffv | |
17 | 16 | nfdm | |
18 | fveq2 | |
|
19 | 18 | dmeqd | |
20 | 14 17 19 | cbviin | |
21 | 20 | a1i | |
22 | 12 21 | eqtrd | |
23 | 9 10 22 | cbviun | |
24 | 23 | rabeqi | |
25 | nfcv | |
|
26 | nfcv | |
|
27 | nfcv | |
|
28 | 2 27 | nffv | |
29 | 28 | nfdm | |
30 | 26 29 | nfiin | |
31 | 25 30 | nfiun | |
32 | nfcv | |
|
33 | nfv | |
|
34 | nfcv | |
|
35 | nfcv | |
|
36 | 28 35 | nffv | |
37 | 25 36 | nfmpt | |
38 | 34 37 | nffv | |
39 | nfcv | |
|
40 | 38 39 | nfel | |
41 | nfv | |
|
42 | fveq2 | |
|
43 | 42 | adantr | |
44 | 41 43 | mpteq2da | |
45 | nfcv | |
|
46 | nfcv | |
|
47 | 16 46 | nffv | |
48 | 18 | fveq1d | |
49 | 45 47 48 | cbvmpt | |
50 | 49 | a1i | |
51 | 44 50 | eqtrd | |
52 | 51 | fveq2d | |
53 | 52 | eleq1d | |
54 | 31 32 33 40 53 | cbvrabw | |
55 | 7 24 54 | 3eqtri | |
56 | nfrab1 | |
|
57 | 7 56 | nfcxfr | |
58 | nfcv | |
|
59 | nfcv | |
|
60 | 57 58 59 38 52 | cbvmptf | |
61 | 8 60 | eqtri | |
62 | 3 4 5 6 55 61 | smfliminflem | |