Metamath Proof Explorer


Theorem smfliminf

Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses smfliminf.n _mF
smfliminf.x _xF
smfliminf.m φM
smfliminf.z Z=M
smfliminf.s φSSAlg
smfliminf.f φF:ZSMblFnS
smfliminf.d D=xnZmndomFm|lim infmZFmx
smfliminf.g G=xDlim infmZFmx
Assertion smfliminf φGSMblFnS

Proof

Step Hyp Ref Expression
1 smfliminf.n _mF
2 smfliminf.x _xF
3 smfliminf.m φM
4 smfliminf.z Z=M
5 smfliminf.s φSSAlg
6 smfliminf.f φF:ZSMblFnS
7 smfliminf.d D=xnZmndomFm|lim infmZFmx
8 smfliminf.g G=xDlim infmZFmx
9 nfcv _imndomFm
10 nfcv _nkidomFk
11 fveq2 n=in=i
12 11 iineq1d n=imndomFm=midomFm
13 nfcv _kFm
14 13 nfdm _kdomFm
15 nfcv _mk
16 1 15 nffv _mFk
17 16 nfdm _mdomFk
18 fveq2 m=kFm=Fk
19 18 dmeqd m=kdomFm=domFk
20 14 17 19 cbviin midomFm=kidomFk
21 20 a1i n=imidomFm=kidomFk
22 12 21 eqtrd n=imndomFm=kidomFk
23 9 10 22 cbviun nZmndomFm=iZkidomFk
24 23 rabeqi xnZmndomFm|lim infmZFmx=xiZkidomFk|lim infmZFmx
25 nfcv _xZ
26 nfcv _xi
27 nfcv _xk
28 2 27 nffv _xFk
29 28 nfdm _xdomFk
30 26 29 nfiin _xkidomFk
31 25 30 nfiun _xiZkidomFk
32 nfcv _yiZkidomFk
33 nfv ylim infmZFmx
34 nfcv _xlim inf
35 nfcv _xy
36 28 35 nffv _xFky
37 25 36 nfmpt _xkZFky
38 34 37 nffv _xlim infkZFky
39 nfcv _x
40 38 39 nfel xlim infkZFky
41 nfv mx=y
42 fveq2 x=yFmx=Fmy
43 42 adantr x=ymZFmx=Fmy
44 41 43 mpteq2da x=ymZFmx=mZFmy
45 nfcv _kFmy
46 nfcv _my
47 16 46 nffv _mFky
48 18 fveq1d m=kFmy=Fky
49 45 47 48 cbvmpt mZFmy=kZFky
50 49 a1i x=ymZFmy=kZFky
51 44 50 eqtrd x=ymZFmx=kZFky
52 51 fveq2d x=ylim infmZFmx=lim infkZFky
53 52 eleq1d x=ylim infmZFmxlim infkZFky
54 31 32 33 40 53 cbvrabw xiZkidomFk|lim infmZFmx=yiZkidomFk|lim infkZFky
55 7 24 54 3eqtri D=yiZkidomFk|lim infkZFky
56 nfrab1 _xxnZmndomFm|lim infmZFmx
57 7 56 nfcxfr _xD
58 nfcv _yD
59 nfcv _ylim infmZFmx
60 57 58 59 38 52 cbvmptf xDlim infmZFmx=yDlim infkZFky
61 8 60 eqtri G=yDlim infkZFky
62 3 4 5 6 55 61 smfliminflem φGSMblFnS