Metamath Proof Explorer


Theorem smfliminf

Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses smfliminf.n _ m F
smfliminf.x _ x F
smfliminf.m φ M
smfliminf.z Z = M
smfliminf.s φ S SAlg
smfliminf.f φ F : Z SMblFn S
smfliminf.d D = x n Z m n dom F m | lim inf m Z F m x
smfliminf.g G = x D lim inf m Z F m x
Assertion smfliminf φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smfliminf.n _ m F
2 smfliminf.x _ x F
3 smfliminf.m φ M
4 smfliminf.z Z = M
5 smfliminf.s φ S SAlg
6 smfliminf.f φ F : Z SMblFn S
7 smfliminf.d D = x n Z m n dom F m | lim inf m Z F m x
8 smfliminf.g G = x D lim inf m Z F m x
9 nfcv _ i m n dom F m
10 nfcv _ n k i dom F k
11 fveq2 n = i n = i
12 11 iineq1d n = i m n dom F m = m i dom F m
13 nfcv _ k F m
14 13 nfdm _ k dom F m
15 nfcv _ m k
16 1 15 nffv _ m F k
17 16 nfdm _ m dom F k
18 fveq2 m = k F m = F k
19 18 dmeqd m = k dom F m = dom F k
20 14 17 19 cbviin m i dom F m = k i dom F k
21 20 a1i n = i m i dom F m = k i dom F k
22 12 21 eqtrd n = i m n dom F m = k i dom F k
23 9 10 22 cbviun n Z m n dom F m = i Z k i dom F k
24 23 rabeqi x n Z m n dom F m | lim inf m Z F m x = x i Z k i dom F k | lim inf m Z F m x
25 nfcv _ x Z
26 nfcv _ x i
27 nfcv _ x k
28 2 27 nffv _ x F k
29 28 nfdm _ x dom F k
30 26 29 nfiin _ x k i dom F k
31 25 30 nfiun _ x i Z k i dom F k
32 nfcv _ y i Z k i dom F k
33 nfv y lim inf m Z F m x
34 nfcv _ x lim inf
35 nfcv _ x y
36 28 35 nffv _ x F k y
37 25 36 nfmpt _ x k Z F k y
38 34 37 nffv _ x lim inf k Z F k y
39 nfcv _ x
40 38 39 nfel x lim inf k Z F k y
41 nfv m x = y
42 fveq2 x = y F m x = F m y
43 42 adantr x = y m Z F m x = F m y
44 41 43 mpteq2da x = y m Z F m x = m Z F m y
45 nfcv _ k F m y
46 nfcv _ m y
47 16 46 nffv _ m F k y
48 18 fveq1d m = k F m y = F k y
49 45 47 48 cbvmpt m Z F m y = k Z F k y
50 49 a1i x = y m Z F m y = k Z F k y
51 44 50 eqtrd x = y m Z F m x = k Z F k y
52 51 fveq2d x = y lim inf m Z F m x = lim inf k Z F k y
53 52 eleq1d x = y lim inf m Z F m x lim inf k Z F k y
54 31 32 33 40 53 cbvrabw x i Z k i dom F k | lim inf m Z F m x = y i Z k i dom F k | lim inf k Z F k y
55 7 24 54 3eqtri D = y i Z k i dom F k | lim inf k Z F k y
56 nfrab1 _ x x n Z m n dom F m | lim inf m Z F m x
57 7 56 nfcxfr _ x D
58 nfcv _ y D
59 nfcv _ y lim inf m Z F m x
60 57 58 59 38 52 cbvmptf x D lim inf m Z F m x = y D lim inf k Z F k y
61 8 60 eqtri G = y D lim inf k Z F k y
62 3 4 5 6 55 61 smfliminflem φ G SMblFn S