| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfliminf.n |
|- F/_ m F |
| 2 |
|
smfliminf.x |
|- F/_ x F |
| 3 |
|
smfliminf.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
smfliminf.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
smfliminf.s |
|- ( ph -> S e. SAlg ) |
| 6 |
|
smfliminf.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 7 |
|
smfliminf.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
| 8 |
|
smfliminf.g |
|- G = ( x e. D |-> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 9 |
|
nfcv |
|- F/_ i |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 10 |
|
nfcv |
|- F/_ n |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 11 |
|
fveq2 |
|- ( n = i -> ( ZZ>= ` n ) = ( ZZ>= ` i ) ) |
| 12 |
11
|
iineq1d |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) |
| 13 |
|
nfcv |
|- F/_ k ( F ` m ) |
| 14 |
13
|
nfdm |
|- F/_ k dom ( F ` m ) |
| 15 |
|
nfcv |
|- F/_ m k |
| 16 |
1 15
|
nffv |
|- F/_ m ( F ` k ) |
| 17 |
16
|
nfdm |
|- F/_ m dom ( F ` k ) |
| 18 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
| 19 |
18
|
dmeqd |
|- ( m = k -> dom ( F ` m ) = dom ( F ` k ) ) |
| 20 |
14 17 19
|
cbviin |
|- |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 21 |
20
|
a1i |
|- ( n = i -> |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) ) |
| 22 |
12 21
|
eqtrd |
|- ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) ) |
| 23 |
9 10 22
|
cbviun |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 24 |
23
|
rabeqi |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } = { x e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
| 25 |
|
nfcv |
|- F/_ x Z |
| 26 |
|
nfcv |
|- F/_ x ( ZZ>= ` i ) |
| 27 |
|
nfcv |
|- F/_ x k |
| 28 |
2 27
|
nffv |
|- F/_ x ( F ` k ) |
| 29 |
28
|
nfdm |
|- F/_ x dom ( F ` k ) |
| 30 |
26 29
|
nfiin |
|- F/_ x |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 31 |
25 30
|
nfiun |
|- F/_ x U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 32 |
|
nfcv |
|- F/_ y U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) |
| 33 |
|
nfv |
|- F/ y ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR |
| 34 |
|
nfcv |
|- F/_ x liminf |
| 35 |
|
nfcv |
|- F/_ x y |
| 36 |
28 35
|
nffv |
|- F/_ x ( ( F ` k ) ` y ) |
| 37 |
25 36
|
nfmpt |
|- F/_ x ( k e. Z |-> ( ( F ` k ) ` y ) ) |
| 38 |
34 37
|
nffv |
|- F/_ x ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) |
| 39 |
|
nfcv |
|- F/_ x RR |
| 40 |
38 39
|
nfel |
|- F/ x ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR |
| 41 |
|
nfv |
|- F/ m x = y |
| 42 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 43 |
42
|
adantr |
|- ( ( x = y /\ m e. Z ) -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
| 44 |
41 43
|
mpteq2da |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
| 45 |
|
nfcv |
|- F/_ k ( ( F ` m ) ` y ) |
| 46 |
|
nfcv |
|- F/_ m y |
| 47 |
16 46
|
nffv |
|- F/_ m ( ( F ` k ) ` y ) |
| 48 |
18
|
fveq1d |
|- ( m = k -> ( ( F ` m ) ` y ) = ( ( F ` k ) ` y ) ) |
| 49 |
45 47 48
|
cbvmpt |
|- ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) |
| 50 |
49
|
a1i |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) ) |
| 51 |
44 50
|
eqtrd |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) ) |
| 52 |
51
|
fveq2d |
|- ( x = y -> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) |
| 53 |
52
|
eleq1d |
|- ( x = y -> ( ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR <-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR ) ) |
| 54 |
31 32 33 40 53
|
cbvrabw |
|- { x e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } = { y e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR } |
| 55 |
7 24 54
|
3eqtri |
|- D = { y e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR } |
| 56 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
| 57 |
7 56
|
nfcxfr |
|- F/_ x D |
| 58 |
|
nfcv |
|- F/_ y D |
| 59 |
|
nfcv |
|- F/_ y ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
| 60 |
57 58 59 38 52
|
cbvmptf |
|- ( x e. D |-> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) |
| 61 |
8 60
|
eqtri |
|- G = ( y e. D |-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) |
| 62 |
3 4 5 6 55 61
|
smfliminflem |
|- ( ph -> G e. ( SMblFn ` S ) ) |