| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfliminf.n |  |-  F/_ m F | 
						
							| 2 |  | smfliminf.x |  |-  F/_ x F | 
						
							| 3 |  | smfliminf.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | smfliminf.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | smfliminf.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 6 |  | smfliminf.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 7 |  | smfliminf.d |  |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } | 
						
							| 8 |  | smfliminf.g |  |-  G = ( x e. D |-> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 9 |  | nfcv |  |-  F/_ i |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 10 |  | nfcv |  |-  F/_ n |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 11 |  | fveq2 |  |-  ( n = i -> ( ZZ>= ` n ) = ( ZZ>= ` i ) ) | 
						
							| 12 | 11 | iineq1d |  |-  ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) ) | 
						
							| 13 |  | nfcv |  |-  F/_ k ( F ` m ) | 
						
							| 14 | 13 | nfdm |  |-  F/_ k dom ( F ` m ) | 
						
							| 15 |  | nfcv |  |-  F/_ m k | 
						
							| 16 | 1 15 | nffv |  |-  F/_ m ( F ` k ) | 
						
							| 17 | 16 | nfdm |  |-  F/_ m dom ( F ` k ) | 
						
							| 18 |  | fveq2 |  |-  ( m = k -> ( F ` m ) = ( F ` k ) ) | 
						
							| 19 | 18 | dmeqd |  |-  ( m = k -> dom ( F ` m ) = dom ( F ` k ) ) | 
						
							| 20 | 14 17 19 | cbviin |  |-  |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 21 | 20 | a1i |  |-  ( n = i -> |^|_ m e. ( ZZ>= ` i ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) ) | 
						
							| 22 | 12 21 | eqtrd |  |-  ( n = i -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) ) | 
						
							| 23 | 9 10 22 | cbviun |  |-  U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 24 | 23 | rabeqi |  |-  { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } = { x e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } | 
						
							| 25 |  | nfcv |  |-  F/_ x Z | 
						
							| 26 |  | nfcv |  |-  F/_ x ( ZZ>= ` i ) | 
						
							| 27 |  | nfcv |  |-  F/_ x k | 
						
							| 28 | 2 27 | nffv |  |-  F/_ x ( F ` k ) | 
						
							| 29 | 28 | nfdm |  |-  F/_ x dom ( F ` k ) | 
						
							| 30 | 26 29 | nfiin |  |-  F/_ x |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 31 | 25 30 | nfiun |  |-  F/_ x U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 32 |  | nfcv |  |-  F/_ y U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | 
						
							| 33 |  | nfv |  |-  F/ y ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR | 
						
							| 34 |  | nfcv |  |-  F/_ x liminf | 
						
							| 35 |  | nfcv |  |-  F/_ x y | 
						
							| 36 | 28 35 | nffv |  |-  F/_ x ( ( F ` k ) ` y ) | 
						
							| 37 | 25 36 | nfmpt |  |-  F/_ x ( k e. Z |-> ( ( F ` k ) ` y ) ) | 
						
							| 38 | 34 37 | nffv |  |-  F/_ x ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) | 
						
							| 39 |  | nfcv |  |-  F/_ x RR | 
						
							| 40 | 38 39 | nfel |  |-  F/ x ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR | 
						
							| 41 |  | nfv |  |-  F/ m x = y | 
						
							| 42 |  | fveq2 |  |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( x = y /\ m e. Z ) -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 44 | 41 43 | mpteq2da |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 45 |  | nfcv |  |-  F/_ k ( ( F ` m ) ` y ) | 
						
							| 46 |  | nfcv |  |-  F/_ m y | 
						
							| 47 | 16 46 | nffv |  |-  F/_ m ( ( F ` k ) ` y ) | 
						
							| 48 | 18 | fveq1d |  |-  ( m = k -> ( ( F ` m ) ` y ) = ( ( F ` k ) ` y ) ) | 
						
							| 49 | 45 47 48 | cbvmpt |  |-  ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) | 
						
							| 50 | 49 | a1i |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) ) | 
						
							| 51 | 44 50 | eqtrd |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( k e. Z |-> ( ( F ` k ) ` y ) ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( x = y -> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) | 
						
							| 53 | 52 | eleq1d |  |-  ( x = y -> ( ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR <-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR ) ) | 
						
							| 54 | 31 32 33 40 53 | cbvrabw |  |-  { x e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } = { y e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR } | 
						
							| 55 | 7 24 54 | 3eqtri |  |-  D = { y e. U_ i e. Z |^|_ k e. ( ZZ>= ` i ) dom ( F ` k ) | ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) e. RR } | 
						
							| 56 |  | nfrab1 |  |-  F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } | 
						
							| 57 | 7 56 | nfcxfr |  |-  F/_ x D | 
						
							| 58 |  | nfcv |  |-  F/_ y D | 
						
							| 59 |  | nfcv |  |-  F/_ y ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 60 | 57 58 59 38 52 | cbvmptf |  |-  ( x e. D |-> ( liminf ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) | 
						
							| 61 | 8 60 | eqtri |  |-  G = ( y e. D |-> ( liminf ` ( k e. Z |-> ( ( F ` k ) ` y ) ) ) ) | 
						
							| 62 | 3 4 5 6 55 61 | smfliminflem |  |-  ( ph -> G e. ( SMblFn ` S ) ) |