Metamath Proof Explorer


Theorem smfliminfmpt

Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of Fremlin1 p. 39 . A can contain m as a free variable, in other words it can be thought of as an indexed collection A ( m ) . B can be thought of as a collection with two indices B ( m , x ) . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses smfliminfmpt.p 𝑚 𝜑
smfliminfmpt.x 𝑥 𝜑
smfliminfmpt.n 𝑛 𝜑
smfliminfmpt.m ( 𝜑𝑀 ∈ ℤ )
smfliminfmpt.z 𝑍 = ( ℤ𝑀 )
smfliminfmpt.s ( 𝜑𝑆 ∈ SAlg )
smfliminfmpt.b ( ( 𝜑𝑚𝑍𝑥𝐴 ) → 𝐵𝑉 )
smfliminfmpt.f ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfliminfmpt.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ }
smfliminfmpt.g 𝐺 = ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) )
Assertion smfliminfmpt ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfliminfmpt.p 𝑚 𝜑
2 smfliminfmpt.x 𝑥 𝜑
3 smfliminfmpt.n 𝑛 𝜑
4 smfliminfmpt.m ( 𝜑𝑀 ∈ ℤ )
5 smfliminfmpt.z 𝑍 = ( ℤ𝑀 )
6 smfliminfmpt.s ( 𝜑𝑆 ∈ SAlg )
7 smfliminfmpt.b ( ( 𝜑𝑚𝑍𝑥𝐴 ) → 𝐵𝑉 )
8 smfliminfmpt.f ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
9 smfliminfmpt.d 𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ }
10 smfliminfmpt.g 𝐺 = ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) )
11 10 a1i ( 𝜑𝐺 = ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ) )
12 9 a1i ( 𝜑𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
13 simpr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
14 nfv 𝑚 𝑛𝑍
15 1 14 nfan 𝑚 ( 𝜑𝑛𝑍 )
16 simpll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
17 5 uztrn2 ( ( 𝑛𝑍𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
18 17 adantll ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
19 simpr ( ( 𝜑𝑚𝑍 ) → 𝑚𝑍 )
20 8 elexd ( ( 𝜑𝑚𝑍 ) → ( 𝑥𝐴𝐵 ) ∈ V )
21 eqid ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) = ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
22 21 fvmpt2 ( ( 𝑚𝑍 ∧ ( 𝑥𝐴𝐵 ) ∈ V ) → ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = ( 𝑥𝐴𝐵 ) )
23 19 20 22 syl2anc ( ( 𝜑𝑚𝑍 ) → ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = ( 𝑥𝐴𝐵 ) )
24 23 dmeqd ( ( 𝜑𝑚𝑍 ) → dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥𝐴𝐵 ) )
25 nfv 𝑥 𝑚𝑍
26 2 25 nfan 𝑥 ( 𝜑𝑚𝑍 )
27 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
28 7 3expa ( ( ( 𝜑𝑚𝑍 ) ∧ 𝑥𝐴 ) → 𝐵𝑉 )
29 26 27 28 dmmptdf ( ( 𝜑𝑚𝑍 ) → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
30 24 29 eqtr2d ( ( 𝜑𝑚𝑍 ) → 𝐴 = dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
31 16 18 30 syl2anc ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝐴 = dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
32 15 31 iineq2d ( ( 𝜑𝑛𝑍 ) → 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
33 3 32 iuneq2df ( 𝜑 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
34 33 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
35 13 34 eleqtrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
36 35 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
37 eliun ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ↔ ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
38 37 biimpi ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
39 38 adantl ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
40 nfv 𝑛 ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) )
41 nfcv 𝑚 𝑥
42 nfii1 𝑚 𝑚 ∈ ( ℤ𝑛 ) 𝐴
43 41 42 nfel 𝑚 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴
44 1 14 43 nf3an 𝑚 ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
45 23 fveq1d ( ( 𝜑𝑚𝑍 ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
46 16 18 45 syl2anc ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
47 46 3adantl3 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
48 eliinid ( ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴𝑚 ∈ ( ℤ𝑛 ) ) → 𝑥𝐴 )
49 48 3ad2antl3 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑥𝐴 )
50 simpl1 ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝜑 )
51 simp2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛𝑍 )
52 51 17 sylan ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
53 50 52 49 7 syl3anc ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝐵𝑉 )
54 27 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
55 49 53 54 syl2anc ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
56 47 55 eqtrd ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = 𝐵 )
57 44 56 mpteq2da ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) )
58 57 fveq2d ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) ) )
59 nfcv 𝑚 𝑍
60 nfcv 𝑚 ( ℤ𝑛 )
61 eqid ( ℤ𝑛 ) = ( ℤ𝑛 )
62 5 eluzelz2 ( 𝑛𝑍𝑛 ∈ ℤ )
63 62 uzidd ( 𝑛𝑍𝑛 ∈ ( ℤ𝑛 ) )
64 63 3ad2ant2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → 𝑛 ∈ ( ℤ𝑛 ) )
65 fvexd ( ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V )
66 44 59 60 5 61 51 64 65 liminfequzmpt2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
67 44 59 60 5 61 51 64 53 liminfequzmpt2 ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ 𝐵 ) ) )
68 58 66 67 3eqtr4d ( ( 𝜑𝑛𝑍𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) )
69 68 3exp ( 𝜑 → ( 𝑛𝑍 → ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ) ) )
70 3 40 69 rexlimd ( 𝜑 → ( ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ) )
71 70 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( ∃ 𝑛𝑍 𝑥 𝑚 ∈ ( ℤ𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ) )
72 39 71 mpd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) )
73 72 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) )
74 simprr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ )
75 73 74 eqeltrd ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
76 36 75 jca ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) )
77 simpl ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝜑 )
78 simpr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) )
79 33 eqcomd ( 𝜑 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
80 79 adantr ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) = 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
81 78 80 eleqtrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
82 81 adantrr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
83 simprr ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
84 simp2 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
85 72 eqcomd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) = ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
86 85 3adant3 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) = ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
87 simp3 ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ )
88 86 87 eqeltrd ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ )
89 84 88 jca ( ( 𝜑𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) )
90 77 82 83 89 syl3anc ( ( 𝜑 ∧ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) )
91 76 90 impbida ( 𝜑 → ( ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ ) ↔ ( 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) )
92 2 91 rabbida3 ( 𝜑 → { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } )
93 12 92 eqtrd ( 𝜑𝐷 = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } )
94 9 eleq2i ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
95 94 biimpi ( 𝑥𝐷𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } )
96 rabidim1 ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ∈ ℝ } → 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
97 95 96 syl ( 𝑥𝐷𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) 𝐴 )
98 97 85 sylan2 ( ( 𝜑𝑥𝐷 ) → ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) = ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
99 2 93 98 mpteq12da ( 𝜑 → ( 𝑥𝐷 ↦ ( lim inf ‘ ( 𝑚𝑍𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) )
100 11 99 eqtrd ( 𝜑𝐺 = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) )
101 nfmpt1 𝑚 ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
102 nfcv 𝑥 𝑍
103 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
104 102 103 nfmpt 𝑥 ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) )
105 1 8 fmptd2f ( 𝜑 → ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
106 eqid { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ }
107 eqid ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) )
108 101 104 4 5 6 105 106 107 smfliminf ( 𝜑 → ( 𝑥 ∈ { 𝑥 𝑛𝑍 𝑚 ∈ ( ℤ𝑛 ) dom ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚𝑍 ↦ ( ( ( 𝑚𝑍 ↦ ( 𝑥𝐴𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) )
109 100 108 eqeltrd ( 𝜑𝐺 ∈ ( SMblFn ‘ 𝑆 ) )