| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfliminfmpt.p |
⊢ Ⅎ 𝑚 𝜑 |
| 2 |
|
smfliminfmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
| 3 |
|
smfliminfmpt.n |
⊢ Ⅎ 𝑛 𝜑 |
| 4 |
|
smfliminfmpt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
smfliminfmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 6 |
|
smfliminfmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 7 |
|
smfliminfmpt.b |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 8 |
|
smfliminfmpt.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 9 |
|
smfliminfmpt.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } |
| 10 |
|
smfliminfmpt.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 12 |
9
|
a1i |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ 𝑍 |
| 15 |
1 14
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 17 |
5
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
| 20 |
8
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 21 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 |
21
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 23 |
19 20 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 24 |
23
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑥 𝑚 ∈ 𝑍 |
| 26 |
2 25
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) |
| 27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 28 |
7
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 29 |
26 27 28
|
dmmptdf |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 30 |
24 29
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 31 |
16 18 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 = dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 32 |
15 31
|
iineq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 33 |
3 32
|
iuneq2df |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 35 |
13 34
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 36 |
35
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 37 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 38 |
37
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑛 ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
| 42 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
| 43 |
41 42
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 |
| 44 |
1 14 43
|
nf3an |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 45 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 46 |
16 18 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 47 |
46
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
| 48 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 49 |
48
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 50 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 51 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ 𝑍 ) |
| 52 |
51 17
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 53 |
50 52 49 7
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐵 ∈ 𝑉 ) |
| 54 |
27
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 55 |
49 53 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 56 |
47 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) = 𝐵 ) |
| 57 |
44 56
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) ) |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑍 |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑛 ) |
| 61 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 62 |
5
|
eluzelz2 |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ ) |
| 63 |
62
|
uzidd |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 64 |
63
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 65 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 66 |
44 59 60 5 61 51 64 65
|
liminfequzmpt2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 67 |
44 59 60 5 61 51 64 53
|
liminfequzmpt2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ 𝐵 ) ) ) |
| 68 |
58 66 67
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 69 |
68
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) ) |
| 70 |
3 40 69
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
| 72 |
39 71
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 73 |
72
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) |
| 74 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
| 75 |
73 74
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 76 |
36 75
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) |
| 77 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝜑 ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) |
| 79 |
33
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 81 |
78 80
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 82 |
81
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 83 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 84 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 85 |
72
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 86 |
85
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 87 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 88 |
86 87
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) |
| 89 |
84 88
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) |
| 90 |
77 82 83 89
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ) |
| 91 |
76 90
|
impbida |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∧ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ ) ) ) |
| 92 |
2 91
|
rabbida3 |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
| 93 |
12 92
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ) |
| 94 |
9
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
| 95 |
94
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } ) |
| 96 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ∈ ℝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 97 |
95 96
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝐴 ) |
| 98 |
97 85
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 99 |
2 93 98
|
mpteq12da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 100 |
11 99
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ) |
| 101 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 102 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 103 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 104 |
102 103
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 105 |
1 8
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 106 |
|
eqid |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } |
| 107 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 108 |
101 104 4 5 6 105 106 107
|
smfliminf |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ∣ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ∈ ℝ } ↦ ( lim inf ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( ( 𝑚 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 109 |
100 108
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( SMblFn ‘ 𝑆 ) ) |