| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsupmpt.p |
|- F/ m ph |
| 2 |
|
smflimsupmpt.x |
|- F/ x ph |
| 3 |
|
smflimsupmpt.n |
|- F/ n ph |
| 4 |
|
smflimsupmpt.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
smflimsupmpt.z |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
smflimsupmpt.s |
|- ( ph -> S e. SAlg ) |
| 7 |
|
smflimsupmpt.b |
|- ( ( ph /\ m e. Z /\ x e. A ) -> B e. W ) |
| 8 |
|
smflimsupmpt.f |
|- ( ( ph /\ m e. Z ) -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 9 |
|
smflimsupmpt.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } |
| 10 |
|
smflimsupmpt.g |
|- G = ( x e. D |-> ( limsup ` ( m e. Z |-> B ) ) ) |
| 11 |
10
|
a1i |
|- ( ph -> G = ( x e. D |-> ( limsup ` ( m e. Z |-> B ) ) ) ) |
| 12 |
9
|
a1i |
|- ( ph -> D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } ) |
| 13 |
|
simpr |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 14 |
|
nfv |
|- F/ m n e. Z |
| 15 |
1 14
|
nfan |
|- F/ m ( ph /\ n e. Z ) |
| 16 |
|
simpll |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
| 17 |
5
|
uztrn2 |
|- ( ( n e. Z /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
| 18 |
17
|
adantll |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
| 19 |
|
simpr |
|- ( ( ph /\ m e. Z ) -> m e. Z ) |
| 20 |
8
|
elexd |
|- ( ( ph /\ m e. Z ) -> ( x e. A |-> B ) e. _V ) |
| 21 |
|
eqid |
|- ( m e. Z |-> ( x e. A |-> B ) ) = ( m e. Z |-> ( x e. A |-> B ) ) |
| 22 |
21
|
fvmpt2 |
|- ( ( m e. Z /\ ( x e. A |-> B ) e. _V ) -> ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) = ( x e. A |-> B ) ) |
| 23 |
19 20 22
|
syl2anc |
|- ( ( ph /\ m e. Z ) -> ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) = ( x e. A |-> B ) ) |
| 24 |
23
|
dmeqd |
|- ( ( ph /\ m e. Z ) -> dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) = dom ( x e. A |-> B ) ) |
| 25 |
|
nfv |
|- F/ x m e. Z |
| 26 |
2 25
|
nfan |
|- F/ x ( ph /\ m e. Z ) |
| 27 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 28 |
7
|
3expa |
|- ( ( ( ph /\ m e. Z ) /\ x e. A ) -> B e. W ) |
| 29 |
26 27 28
|
dmmptdf |
|- ( ( ph /\ m e. Z ) -> dom ( x e. A |-> B ) = A ) |
| 30 |
24 29
|
eqtr2d |
|- ( ( ph /\ m e. Z ) -> A = dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 31 |
16 18 30
|
syl2anc |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> A = dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 32 |
15 31
|
iineq2d |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) A = |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 33 |
3 32
|
iuneq2df |
|- ( ph -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 35 |
13 34
|
eleqtrd |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 36 |
35
|
adantrr |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 37 |
|
eliun |
|- ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A <-> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) A ) |
| 38 |
37
|
biimpi |
|- ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) A ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) A ) |
| 40 |
|
nfv |
|- F/ n ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) |
| 41 |
|
nfcv |
|- F/_ m x |
| 42 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) A |
| 43 |
41 42
|
nfel |
|- F/ m x e. |^|_ m e. ( ZZ>= ` n ) A |
| 44 |
1 14 43
|
nf3an |
|- F/ m ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) |
| 45 |
23
|
fveq1d |
|- ( ( ph /\ m e. Z ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 46 |
16 18 45
|
syl2anc |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 47 |
46
|
3adantl3 |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) = ( ( x e. A |-> B ) ` x ) ) |
| 48 |
|
eliinid |
|- ( ( x e. |^|_ m e. ( ZZ>= ` n ) A /\ m e. ( ZZ>= ` n ) ) -> x e. A ) |
| 49 |
48
|
3ad2antl3 |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> x e. A ) |
| 50 |
|
simpl1 |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
| 51 |
18
|
3adantl3 |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> m e. Z ) |
| 52 |
50 51 49 7
|
syl3anc |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> B e. W ) |
| 53 |
27
|
fvmpt2 |
|- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 54 |
49 52 53
|
syl2anc |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 55 |
47 54
|
eqtrd |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) = B ) |
| 56 |
44 55
|
mpteq2da |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> ( m e. ( ZZ>= ` n ) |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> B ) ) |
| 57 |
56
|
fveq2d |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. ( ZZ>= ` n ) |-> B ) ) ) |
| 58 |
4
|
3ad2ant1 |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> M e. ZZ ) |
| 59 |
5
|
eluzelz2 |
|- ( n e. Z -> n e. ZZ ) |
| 60 |
59
|
3ad2ant2 |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> n e. ZZ ) |
| 61 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
| 62 |
|
fvexd |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. Z ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) e. _V ) |
| 63 |
51 62
|
syldan |
|- ( ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) e. _V ) |
| 64 |
44 58 60 5 61 62 63
|
limsupequzmpt |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) |
| 65 |
14
|
nfci |
|- F/_ m Z |
| 66 |
|
nfcv |
|- F/_ m ( ZZ>= ` n ) |
| 67 |
|
simp2 |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> n e. Z ) |
| 68 |
60
|
uzidd |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> n e. ( ZZ>= ` n ) ) |
| 69 |
44 65 66 5 61 67 68 52
|
limsupequzmpt2 |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. Z |-> B ) ) = ( limsup ` ( m e. ( ZZ>= ` n ) |-> B ) ) ) |
| 70 |
57 64 69
|
3eqtr4d |
|- ( ( ph /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) |
| 71 |
70
|
3exp |
|- ( ph -> ( n e. Z -> ( x e. |^|_ m e. ( ZZ>= ` n ) A -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) ) ) |
| 72 |
3 40 71
|
rexlimd |
|- ( ph -> ( E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) A -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> ( E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) A -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) ) |
| 74 |
39 73
|
mpd |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) |
| 75 |
74
|
adantrr |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> B ) ) ) |
| 76 |
|
simprr |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) -> ( limsup ` ( m e. Z |-> B ) ) e. RR ) |
| 77 |
75 76
|
eqeltrd |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) |
| 78 |
36 77
|
jca |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) -> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) |
| 79 |
78
|
ex |
|- ( ph -> ( ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) -> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) ) |
| 80 |
|
simpl |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) -> ph ) |
| 81 |
|
simpr |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) |
| 82 |
33
|
eqcomd |
|- ( ph -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) -> U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 84 |
81 83
|
eleqtrd |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 85 |
84
|
adantrr |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 86 |
|
simprr |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) |
| 87 |
|
simp2 |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 88 |
74
|
eqcomd |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) -> ( limsup ` ( m e. Z |-> B ) ) = ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) |
| 89 |
88
|
3adant3 |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> ( limsup ` ( m e. Z |-> B ) ) = ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) |
| 90 |
|
simp3 |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) |
| 91 |
89 90
|
eqeltrd |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> ( limsup ` ( m e. Z |-> B ) ) e. RR ) |
| 92 |
87 91
|
jca |
|- ( ( ph /\ x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) |
| 93 |
80 85 86 92
|
syl3anc |
|- ( ( ph /\ ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) -> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) |
| 94 |
93
|
ex |
|- ( ph -> ( ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) -> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) ) ) |
| 95 |
79 94
|
impbid |
|- ( ph -> ( ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A /\ ( limsup ` ( m e. Z |-> B ) ) e. RR ) <-> ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) /\ ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR ) ) ) |
| 96 |
2 95
|
rabbida3 |
|- ( ph -> { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } ) |
| 97 |
12 96
|
eqtrd |
|- ( ph -> D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } ) |
| 98 |
9
|
eleq2i |
|- ( x e. D <-> x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } ) |
| 99 |
98
|
biimpi |
|- ( x e. D -> x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } ) |
| 100 |
|
rabidim1 |
|- ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A | ( limsup ` ( m e. Z |-> B ) ) e. RR } -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 101 |
99 100
|
syl |
|- ( x e. D -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) A ) |
| 102 |
101 88
|
sylan2 |
|- ( ( ph /\ x e. D ) -> ( limsup ` ( m e. Z |-> B ) ) = ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) |
| 103 |
2 97 102
|
mpteq12da |
|- ( ph -> ( x e. D |-> ( limsup ` ( m e. Z |-> B ) ) ) = ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |-> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) ) |
| 104 |
11 103
|
eqtrd |
|- ( ph -> G = ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |-> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) ) |
| 105 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> ( x e. A |-> B ) ) |
| 106 |
|
nfcv |
|- F/_ x Z |
| 107 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 108 |
106 107
|
nfmpt |
|- F/_ x ( m e. Z |-> ( x e. A |-> B ) ) |
| 109 |
1 8
|
fmptd2f |
|- ( ph -> ( m e. Z |-> ( x e. A |-> B ) ) : Z --> ( SMblFn ` S ) ) |
| 110 |
|
eqid |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |
| 111 |
|
eqid |
|- ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |-> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) = ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |-> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) |
| 112 |
105 108 4 5 6 109 110 111
|
smflimsup |
|- ( ph -> ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) | ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) e. RR } |-> ( limsup ` ( m e. Z |-> ( ( ( m e. Z |-> ( x e. A |-> B ) ) ` m ) ` x ) ) ) ) e. ( SMblFn ` S ) ) |
| 113 |
104 112
|
eqeltrd |
|- ( ph -> G e. ( SMblFn ` S ) ) |