Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsup.n |
|- F/_ m F |
2 |
|
smflimsup.x |
|- F/_ x F |
3 |
|
smflimsup.m |
|- ( ph -> M e. ZZ ) |
4 |
|
smflimsup.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
smflimsup.s |
|- ( ph -> S e. SAlg ) |
6 |
|
smflimsup.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
7 |
|
smflimsup.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
8 |
|
smflimsup.g |
|- G = ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
9 |
|
fveq2 |
|- ( n = j -> ( ZZ>= ` n ) = ( ZZ>= ` j ) ) |
10 |
9
|
iineq1d |
|- ( n = j -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ m e. ( ZZ>= ` j ) dom ( F ` m ) ) |
11 |
|
nfcv |
|- F/_ q dom ( F ` m ) |
12 |
|
nfcv |
|- F/_ m q |
13 |
1 12
|
nffv |
|- F/_ m ( F ` q ) |
14 |
13
|
nfdm |
|- F/_ m dom ( F ` q ) |
15 |
|
fveq2 |
|- ( m = q -> ( F ` m ) = ( F ` q ) ) |
16 |
15
|
dmeqd |
|- ( m = q -> dom ( F ` m ) = dom ( F ` q ) ) |
17 |
11 14 16
|
cbviin |
|- |^|_ m e. ( ZZ>= ` j ) dom ( F ` m ) = |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) |
18 |
17
|
a1i |
|- ( n = j -> |^|_ m e. ( ZZ>= ` j ) dom ( F ` m ) = |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) ) |
19 |
10 18
|
eqtrd |
|- ( n = j -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) ) |
20 |
19
|
cbviunv |
|- U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) |
21 |
20
|
eleq2i |
|- ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> x e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) ) |
22 |
|
nfcv |
|- F/_ q ( ( F ` m ) ` x ) |
23 |
|
nfcv |
|- F/_ m x |
24 |
13 23
|
nffv |
|- F/_ m ( ( F ` q ) ` x ) |
25 |
15
|
fveq1d |
|- ( m = q -> ( ( F ` m ) ` x ) = ( ( F ` q ) ` x ) ) |
26 |
22 24 25
|
cbvmpt |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( q e. Z |-> ( ( F ` q ) ` x ) ) |
27 |
26
|
fveq2i |
|- ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) |
28 |
27
|
eleq1i |
|- ( ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR <-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR ) |
29 |
21 28
|
anbi12i |
|- ( ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) <-> ( x e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) /\ ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR ) ) |
30 |
29
|
rabbia2 |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } = { x e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) | ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR } |
31 |
|
nfcv |
|- F/_ x Z |
32 |
|
nfcv |
|- F/_ x ( ZZ>= ` j ) |
33 |
|
nfcv |
|- F/_ x q |
34 |
2 33
|
nffv |
|- F/_ x ( F ` q ) |
35 |
34
|
nfdm |
|- F/_ x dom ( F ` q ) |
36 |
32 35
|
nfiin |
|- F/_ x |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) |
37 |
31 36
|
nfiun |
|- F/_ x U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) |
38 |
|
nfcv |
|- F/_ w U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) |
39 |
|
nfv |
|- F/ w ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR |
40 |
|
nfcv |
|- F/_ x limsup |
41 |
|
nfcv |
|- F/_ x w |
42 |
34 41
|
nffv |
|- F/_ x ( ( F ` q ) ` w ) |
43 |
31 42
|
nfmpt |
|- F/_ x ( q e. Z |-> ( ( F ` q ) ` w ) ) |
44 |
40 43
|
nffv |
|- F/_ x ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) |
45 |
|
nfcv |
|- F/_ x RR |
46 |
44 45
|
nfel |
|- F/ x ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) e. RR |
47 |
|
fveq2 |
|- ( x = w -> ( ( F ` q ) ` x ) = ( ( F ` q ) ` w ) ) |
48 |
47
|
mpteq2dv |
|- ( x = w -> ( q e. Z |-> ( ( F ` q ) ` x ) ) = ( q e. Z |-> ( ( F ` q ) ` w ) ) ) |
49 |
48
|
fveq2d |
|- ( x = w -> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) = ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) ) |
50 |
49
|
eleq1d |
|- ( x = w -> ( ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR <-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) e. RR ) ) |
51 |
37 38 39 46 50
|
cbvrabw |
|- { x e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) | ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) e. RR } = { w e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) | ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) e. RR } |
52 |
7 30 51
|
3eqtri |
|- D = { w e. U_ j e. Z |^|_ q e. ( ZZ>= ` j ) dom ( F ` q ) | ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) e. RR } |
53 |
27
|
mpteq2i |
|- ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( x e. D |-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) ) |
54 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
55 |
7 54
|
nfcxfr |
|- F/_ x D |
56 |
|
nfcv |
|- F/_ w D |
57 |
|
nfcv |
|- F/_ w ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) |
58 |
55 56 57 44 49
|
cbvmptf |
|- ( x e. D |-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` x ) ) ) ) = ( w e. D |-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) ) |
59 |
8 53 58
|
3eqtri |
|- G = ( w e. D |-> ( limsup ` ( q e. Z |-> ( ( F ` q ) ` w ) ) ) ) |
60 |
|
nfcv |
|- F/_ x ( ZZ>= ` i ) |
61 |
60 35
|
nfiin |
|- F/_ x |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) |
62 |
|
nfcv |
|- F/_ w |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) |
63 |
|
nfv |
|- F/ w sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR |
64 |
60 42
|
nfmpt |
|- F/_ x ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) |
65 |
64
|
nfrn |
|- F/_ x ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) |
66 |
|
nfcv |
|- F/_ x RR* |
67 |
|
nfcv |
|- F/_ x < |
68 |
65 66 67
|
nfsup |
|- F/_ x sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) |
69 |
68 45
|
nfel |
|- F/ x sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR |
70 |
47
|
mpteq2dv |
|- ( x = w -> ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) = ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) ) |
71 |
70
|
rneqd |
|- ( x = w -> ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) = ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) ) |
72 |
71
|
supeq1d |
|- ( x = w -> sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) = sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) |
73 |
72
|
eleq1d |
|- ( x = w -> ( sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR ) ) |
74 |
61 62 63 69 73
|
cbvrabw |
|- { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } = { w e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } |
75 |
74
|
a1i |
|- ( i = k -> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } = { w e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } ) |
76 |
|
fveq2 |
|- ( i = k -> ( ZZ>= ` i ) = ( ZZ>= ` k ) ) |
77 |
76
|
iineq1d |
|- ( i = k -> |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) = |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) ) |
78 |
77
|
eleq2d |
|- ( i = k -> ( w e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) <-> w e. |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) ) ) |
79 |
76
|
mpteq1d |
|- ( i = k -> ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) = ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) ) |
80 |
79
|
rneqd |
|- ( i = k -> ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) = ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) ) |
81 |
80
|
supeq1d |
|- ( i = k -> sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) = sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) |
82 |
81
|
eleq1d |
|- ( i = k -> ( sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR <-> sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR ) ) |
83 |
78 82
|
anbi12d |
|- ( i = k -> ( ( w e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) /\ sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR ) <-> ( w e. |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) /\ sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR ) ) ) |
84 |
83
|
rabbidva2 |
|- ( i = k -> { w e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } = { w e. |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } ) |
85 |
75 84
|
eqtrd |
|- ( i = k -> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } = { w e. |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } ) |
86 |
85
|
cbvmptv |
|- ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) = ( k e. Z |-> { w e. |^|_ q e. ( ZZ>= ` k ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) e. RR } ) |
87 |
|
fveq2 |
|- ( y = w -> ( ( F ` p ) ` y ) = ( ( F ` p ) ` w ) ) |
88 |
87
|
mpteq2dv |
|- ( y = w -> ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) = ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) ) |
89 |
88
|
rneqd |
|- ( y = w -> ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) = ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) ) |
90 |
89
|
supeq1d |
|- ( y = w -> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) = sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) , RR* , < ) ) |
91 |
90
|
cbvmptv |
|- ( y e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) , RR* , < ) ) |
92 |
|
fveq2 |
|- ( p = q -> ( F ` p ) = ( F ` q ) ) |
93 |
92
|
dmeqd |
|- ( p = q -> dom ( F ` p ) = dom ( F ` q ) ) |
94 |
93
|
cbviinv |
|- |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) = |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) |
95 |
94
|
eleq2i |
|- ( x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) <-> x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) ) |
96 |
|
nfcv |
|- F/_ q ( ( F ` p ) ` x ) |
97 |
|
nfcv |
|- F/_ p ( F ` q ) |
98 |
|
nfcv |
|- F/_ p x |
99 |
97 98
|
nffv |
|- F/_ p ( ( F ` q ) ` x ) |
100 |
92
|
fveq1d |
|- ( p = q -> ( ( F ` p ) ` x ) = ( ( F ` q ) ` x ) ) |
101 |
96 99 100
|
cbvmpt |
|- ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) = ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) |
102 |
101
|
rneqi |
|- ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) = ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) |
103 |
102
|
supeq1i |
|- sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) = sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) |
104 |
103
|
eleq1i |
|- ( sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR <-> sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR ) |
105 |
95 104
|
anbi12i |
|- ( ( x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) /\ sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR ) <-> ( x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) /\ sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR ) ) |
106 |
105
|
rabbia2 |
|- { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } |
107 |
106
|
mpteq2i |
|- ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) = ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) |
108 |
107
|
fveq1i |
|- ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) = ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |
109 |
92
|
fveq1d |
|- ( p = q -> ( ( F ` p ) ` w ) = ( ( F ` q ) ` w ) ) |
110 |
109
|
cbvmptv |
|- ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) = ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) |
111 |
110
|
rneqi |
|- ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) = ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) |
112 |
111
|
supeq1i |
|- sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) , RR* , < ) = sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) |
113 |
108 112
|
mpteq12i |
|- ( w e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` w ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) |
114 |
91 113
|
eqtri |
|- ( y e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) |
115 |
114
|
a1i |
|- ( l = k -> ( y e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) ) |
116 |
|
fveq2 |
|- ( l = k -> ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) = ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` k ) ) |
117 |
|
fveq2 |
|- ( l = k -> ( ZZ>= ` l ) = ( ZZ>= ` k ) ) |
118 |
117
|
mpteq1d |
|- ( l = k -> ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) = ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) ) |
119 |
118
|
rneqd |
|- ( l = k -> ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) = ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) ) |
120 |
119
|
supeq1d |
|- ( l = k -> sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) = sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) |
121 |
116 120
|
mpteq12dv |
|- ( l = k -> ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( q e. ( ZZ>= ` l ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` k ) |-> sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) ) |
122 |
115 121
|
eqtrd |
|- ( l = k -> ( y e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) ) = ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` k ) |-> sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) ) |
123 |
122
|
cbvmptv |
|- ( l e. Z |-> ( y e. ( ( i e. Z |-> { x e. |^|_ p e. ( ZZ>= ` i ) dom ( F ` p ) | sup ( ran ( p e. ( ZZ>= ` i ) |-> ( ( F ` p ) ` x ) ) , RR* , < ) e. RR } ) ` l ) |-> sup ( ran ( p e. ( ZZ>= ` l ) |-> ( ( F ` p ) ` y ) ) , RR* , < ) ) ) = ( k e. Z |-> ( w e. ( ( i e. Z |-> { x e. |^|_ q e. ( ZZ>= ` i ) dom ( F ` q ) | sup ( ran ( q e. ( ZZ>= ` i ) |-> ( ( F ` q ) ` x ) ) , RR* , < ) e. RR } ) ` k ) |-> sup ( ran ( q e. ( ZZ>= ` k ) |-> ( ( F ` q ) ` w ) ) , RR* , < ) ) ) |
124 |
3 4 5 6 52 59 86 123
|
smflimsuplem8 |
|- ( ph -> G e. ( SMblFn ` S ) ) |