| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem8.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | smflimsuplem8.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | smflimsuplem8.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smflimsuplem8.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 5 |  | smflimsuplem8.d |  |-  D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } | 
						
							| 6 |  | smflimsuplem8.g |  |-  G = ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 7 |  | smflimsuplem8.e |  |-  E = ( k e. Z |-> { x e. |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 8 |  | smflimsuplem8.h |  |-  H = ( k e. Z |-> ( x e. ( E ` k ) |-> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 9 | 6 | a1i |  |-  ( ph -> G = ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) ) | 
						
							| 10 | 1 2 3 4 5 7 8 | smflimsuplem7 |  |-  ( ph -> D = { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } ) | 
						
							| 11 |  | rabidim1 |  |-  ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 12 |  | eliun |  |-  ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 13 | 11 12 | sylib |  |-  ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 14 | 13 5 | eleq2s |  |-  ( x e. D -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ x e. D ) -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 16 |  | nfv |  |-  F/ n ( ph /\ x e. D ) | 
						
							| 17 |  | nfv |  |-  F/ n ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) | 
						
							| 18 |  | nfv |  |-  F/ k ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 19 |  | nfv |  |-  F/ m ( ph /\ x e. D ) | 
						
							| 20 |  | nfv |  |-  F/ m n e. Z | 
						
							| 21 |  | nfcv |  |-  F/_ m x | 
						
							| 22 |  | nfii1 |  |-  F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 23 | 21 22 | nfel |  |-  F/ m x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | 
						
							| 24 | 19 20 23 | nf3an |  |-  F/ m ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 25 | 1 | adantr |  |-  ( ( ph /\ x e. D ) -> M e. ZZ ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> M e. ZZ ) | 
						
							| 27 | 3 | adantr |  |-  ( ( ph /\ x e. D ) -> S e. SAlg ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> S e. SAlg ) | 
						
							| 29 | 4 | adantr |  |-  ( ( ph /\ x e. D ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 31 |  | rabidim2 |  |-  ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) | 
						
							| 32 | 31 5 | eleq2s |  |-  ( x e. D -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) | 
						
							| 33 |  | fveq2 |  |-  ( m = y -> ( F ` m ) = ( F ` y ) ) | 
						
							| 34 | 33 | fveq1d |  |-  ( m = y -> ( ( F ` m ) ` x ) = ( ( F ` y ) ` x ) ) | 
						
							| 35 | 34 | cbvmptv |  |-  ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( y e. Z |-> ( ( F ` y ) ` x ) ) | 
						
							| 36 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( z = y -> ( ( F ` z ) ` x ) = ( ( F ` y ) ` x ) ) | 
						
							| 38 | 37 | cbvmptv |  |-  ( z e. Z |-> ( ( F ` z ) ` x ) ) = ( y e. Z |-> ( ( F ` y ) ` x ) ) | 
						
							| 39 |  | fveq2 |  |-  ( z = w -> ( F ` z ) = ( F ` w ) ) | 
						
							| 40 | 39 | fveq1d |  |-  ( z = w -> ( ( F ` z ) ` x ) = ( ( F ` w ) ` x ) ) | 
						
							| 41 | 40 | cbvmptv |  |-  ( z e. Z |-> ( ( F ` z ) ` x ) ) = ( w e. Z |-> ( ( F ` w ) ` x ) ) | 
						
							| 42 | 35 38 41 | 3eqtr2i |  |-  ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( w e. Z |-> ( ( F ` w ) ` x ) ) | 
						
							| 43 | 42 | fveq2i |  |-  ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) | 
						
							| 44 | 43 | eleq1i |  |-  ( ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR <-> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) | 
						
							| 45 | 32 44 | sylib |  |-  ( x e. D -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ph /\ x e. D ) -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) | 
						
							| 47 | 46 | 3ad2ant1 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) | 
						
							| 48 | 47 44 | sylibr |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) | 
						
							| 49 |  | simp2 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. Z ) | 
						
							| 50 |  | simp3 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) | 
						
							| 51 | 18 24 26 2 28 30 7 8 48 49 50 | smflimsuplem5 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. ( ZZ>= ` n ) |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 52 |  | fvexd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) e. _V ) | 
						
							| 53 | 2 | fvexi |  |-  Z e. _V | 
						
							| 54 | 53 | a1i |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> Z e. _V ) | 
						
							| 55 | 2 49 | eluzelz2d |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. ZZ ) | 
						
							| 56 |  | eqid |  |-  ( ZZ>= ` n ) = ( ZZ>= ` n ) | 
						
							| 57 | 55 | uzidd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. ( ZZ>= ` n ) ) | 
						
							| 58 | 57 | uzssd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` n ) ) | 
						
							| 59 | 2 49 | uzssd2 |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ Z ) | 
						
							| 60 |  | fvexd |  |-  ( ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( H ` k ) ` x ) e. _V ) | 
						
							| 61 | 18 52 54 55 56 58 59 60 | climeqmpt |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ( k e. ( ZZ>= ` n ) |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) <-> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) ) | 
						
							| 62 | 51 61 | mpbid |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 63 |  | simp1l |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ph ) | 
						
							| 64 |  | nfv |  |-  F/ m ph | 
						
							| 65 | 64 20 | nfan |  |-  F/ m ( ph /\ n e. Z ) | 
						
							| 66 | 2 | eluzelz2 |  |-  ( n e. Z -> n e. ZZ ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ph /\ n e. Z ) -> n e. ZZ ) | 
						
							| 68 | 1 | adantr |  |-  ( ( ph /\ n e. Z ) -> M e. ZZ ) | 
						
							| 69 |  | fvexd |  |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` x ) e. _V ) | 
						
							| 70 |  | fvexd |  |-  ( ( ( ph /\ n e. Z ) /\ m e. Z ) -> ( ( F ` m ) ` x ) e. _V ) | 
						
							| 71 | 65 67 68 56 2 69 70 | limsupequzmpt |  |-  ( ( ph /\ n e. Z ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 72 | 63 49 71 | syl2anc |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 73 | 62 72 | breqtrd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 74 | 73 | climfvd |  |-  ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) | 
						
							| 75 | 74 | 3exp |  |-  ( ( ph /\ x e. D ) -> ( n e. Z -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) ) | 
						
							| 76 | 16 17 75 | rexlimd |  |-  ( ( ph /\ x e. D ) -> ( E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) | 
						
							| 77 | 15 76 | mpd |  |-  ( ( ph /\ x e. D ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) | 
						
							| 78 | 10 77 | mpteq12dva |  |-  ( ph -> ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) | 
						
							| 79 | 9 78 | eqtrd |  |-  ( ph -> G = ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) | 
						
							| 80 | 1 2 3 4 7 8 | smflimsuplem3 |  |-  ( ph -> ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) e. ( SMblFn ` S ) ) | 
						
							| 81 | 79 80 | eqeltrd |  |-  ( ph -> G e. ( SMblFn ` S ) ) |