| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem8.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
smflimsuplem8.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
smflimsuplem8.s |
|- ( ph -> S e. SAlg ) |
| 4 |
|
smflimsuplem8.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 5 |
|
smflimsuplem8.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } |
| 6 |
|
smflimsuplem8.g |
|- G = ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 7 |
|
smflimsuplem8.e |
|- E = ( k e. Z |-> { x e. |^|_ m e. ( ZZ>= ` k ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 8 |
|
smflimsuplem8.h |
|- H = ( k e. Z |-> ( x e. ( E ` k ) |-> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 9 |
6
|
a1i |
|- ( ph -> G = ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) ) |
| 10 |
1 2 3 4 5 7 8
|
smflimsuplem7 |
|- ( ph -> D = { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } ) |
| 11 |
|
rabidim1 |
|- ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 12 |
|
eliun |
|- ( x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 13 |
11 12
|
sylib |
|- ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 14 |
13 5
|
eleq2s |
|- ( x e. D -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ x e. D ) -> E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 16 |
|
nfv |
|- F/ n ( ph /\ x e. D ) |
| 17 |
|
nfv |
|- F/ n ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) |
| 18 |
|
nfv |
|- F/ k ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 19 |
|
nfv |
|- F/ m ( ph /\ x e. D ) |
| 20 |
|
nfv |
|- F/ m n e. Z |
| 21 |
|
nfcv |
|- F/_ m x |
| 22 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 23 |
21 22
|
nfel |
|- F/ m x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
| 24 |
19 20 23
|
nf3an |
|- F/ m ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 25 |
1
|
adantr |
|- ( ( ph /\ x e. D ) -> M e. ZZ ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> M e. ZZ ) |
| 27 |
3
|
adantr |
|- ( ( ph /\ x e. D ) -> S e. SAlg ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> S e. SAlg ) |
| 29 |
4
|
adantr |
|- ( ( ph /\ x e. D ) -> F : Z --> ( SMblFn ` S ) ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> F : Z --> ( SMblFn ` S ) ) |
| 31 |
|
rabidim2 |
|- ( x e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR } -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |
| 32 |
31 5
|
eleq2s |
|- ( x e. D -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |
| 33 |
|
fveq2 |
|- ( m = y -> ( F ` m ) = ( F ` y ) ) |
| 34 |
33
|
fveq1d |
|- ( m = y -> ( ( F ` m ) ` x ) = ( ( F ` y ) ` x ) ) |
| 35 |
34
|
cbvmptv |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( y e. Z |-> ( ( F ` y ) ` x ) ) |
| 36 |
|
fveq2 |
|- ( z = y -> ( F ` z ) = ( F ` y ) ) |
| 37 |
36
|
fveq1d |
|- ( z = y -> ( ( F ` z ) ` x ) = ( ( F ` y ) ` x ) ) |
| 38 |
37
|
cbvmptv |
|- ( z e. Z |-> ( ( F ` z ) ` x ) ) = ( y e. Z |-> ( ( F ` y ) ` x ) ) |
| 39 |
|
fveq2 |
|- ( z = w -> ( F ` z ) = ( F ` w ) ) |
| 40 |
39
|
fveq1d |
|- ( z = w -> ( ( F ` z ) ` x ) = ( ( F ` w ) ` x ) ) |
| 41 |
40
|
cbvmptv |
|- ( z e. Z |-> ( ( F ` z ) ` x ) ) = ( w e. Z |-> ( ( F ` w ) ` x ) ) |
| 42 |
35 38 41
|
3eqtr2i |
|- ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( w e. Z |-> ( ( F ` w ) ` x ) ) |
| 43 |
42
|
fveq2i |
|- ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) |
| 44 |
43
|
eleq1i |
|- ( ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR <-> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) |
| 45 |
32 44
|
sylib |
|- ( x e. D -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ x e. D ) -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( w e. Z |-> ( ( F ` w ) ` x ) ) ) e. RR ) |
| 48 |
47 44
|
sylibr |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |
| 49 |
|
simp2 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. Z ) |
| 50 |
|
simp3 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
| 51 |
18 24 26 2 28 30 7 8 48 49 50
|
smflimsuplem5 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. ( ZZ>= ` n ) |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) |
| 52 |
|
fvexd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) e. _V ) |
| 53 |
2
|
fvexi |
|- Z e. _V |
| 54 |
53
|
a1i |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> Z e. _V ) |
| 55 |
2 49
|
eluzelz2d |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. ZZ ) |
| 56 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
| 57 |
55
|
uzidd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. ( ZZ>= ` n ) ) |
| 58 |
57
|
uzssd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` n ) ) |
| 59 |
2 49
|
uzssd2 |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ Z ) |
| 60 |
|
fvexd |
|- ( ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( H ` k ) ` x ) e. _V ) |
| 61 |
18 52 54 55 56 58 59 60
|
climeqmpt |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ( k e. ( ZZ>= ` n ) |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) <-> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) ) |
| 62 |
51 61
|
mpbid |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) ) |
| 63 |
|
simp1l |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ph ) |
| 64 |
|
nfv |
|- F/ m ph |
| 65 |
64 20
|
nfan |
|- F/ m ( ph /\ n e. Z ) |
| 66 |
2
|
eluzelz2 |
|- ( n e. Z -> n e. ZZ ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ZZ ) |
| 68 |
1
|
adantr |
|- ( ( ph /\ n e. Z ) -> M e. ZZ ) |
| 69 |
|
fvexd |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` x ) e. _V ) |
| 70 |
|
fvexd |
|- ( ( ( ph /\ n e. Z ) /\ m e. Z ) -> ( ( F ` m ) ` x ) e. _V ) |
| 71 |
65 67 68 56 2 69 70
|
limsupequzmpt |
|- ( ( ph /\ n e. Z ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 72 |
63 49 71
|
syl2anc |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 73 |
62 72
|
breqtrd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( k e. Z |-> ( ( H ` k ) ` x ) ) ~~> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 74 |
73
|
climfvd |
|- ( ( ( ph /\ x e. D ) /\ n e. Z /\ x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) |
| 75 |
74
|
3exp |
|- ( ( ph /\ x e. D ) -> ( n e. Z -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) ) |
| 76 |
16 17 75
|
rexlimd |
|- ( ( ph /\ x e. D ) -> ( E. n e. Z x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) |
| 77 |
15 76
|
mpd |
|- ( ( ph /\ x e. D ) -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) |
| 78 |
10 77
|
mpteq12dva |
|- ( ph -> ( x e. D |-> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) |
| 79 |
9 78
|
eqtrd |
|- ( ph -> G = ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) ) |
| 80 |
1 2 3 4 7 8
|
smflimsuplem3 |
|- ( ph -> ( x e. { x e. U_ n e. Z |^|_ k e. ( ZZ>= ` n ) dom ( H ` k ) | ( k e. Z |-> ( ( H ` k ) ` x ) ) e. dom ~~> } |-> ( ~~> ` ( k e. Z |-> ( ( H ` k ) ` x ) ) ) ) e. ( SMblFn ` S ) ) |
| 81 |
79 80
|
eqeltrd |
|- ( ph -> G e. ( SMblFn ` S ) ) |