Metamath Proof Explorer


Theorem smflimsupmpt

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . A can contain m as a free variable, in other words it can be thought of as an indexed collection A ( m ) . B can be thought of as a collection with two indices B ( m , x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsupmpt.p m φ
smflimsupmpt.x x φ
smflimsupmpt.n n φ
smflimsupmpt.m φ M
smflimsupmpt.z Z = M
smflimsupmpt.s φ S SAlg
smflimsupmpt.b φ m Z x A B W
smflimsupmpt.f φ m Z x A B SMblFn S
smflimsupmpt.d D = x n Z m n A | lim sup m Z B
smflimsupmpt.g G = x D lim sup m Z B
Assertion smflimsupmpt φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smflimsupmpt.p m φ
2 smflimsupmpt.x x φ
3 smflimsupmpt.n n φ
4 smflimsupmpt.m φ M
5 smflimsupmpt.z Z = M
6 smflimsupmpt.s φ S SAlg
7 smflimsupmpt.b φ m Z x A B W
8 smflimsupmpt.f φ m Z x A B SMblFn S
9 smflimsupmpt.d D = x n Z m n A | lim sup m Z B
10 smflimsupmpt.g G = x D lim sup m Z B
11 10 a1i φ G = x D lim sup m Z B
12 9 a1i φ D = x n Z m n A | lim sup m Z B
13 simpr φ x n Z m n A x n Z m n A
14 nfv m n Z
15 1 14 nfan m φ n Z
16 simpll φ n Z m n φ
17 5 uztrn2 n Z m n m Z
18 17 adantll φ n Z m n m Z
19 simpr φ m Z m Z
20 8 elexd φ m Z x A B V
21 eqid m Z x A B = m Z x A B
22 21 fvmpt2 m Z x A B V m Z x A B m = x A B
23 19 20 22 syl2anc φ m Z m Z x A B m = x A B
24 23 dmeqd φ m Z dom m Z x A B m = dom x A B
25 nfv x m Z
26 2 25 nfan x φ m Z
27 eqid x A B = x A B
28 7 3expa φ m Z x A B W
29 26 27 28 dmmptdf φ m Z dom x A B = A
30 24 29 eqtr2d φ m Z A = dom m Z x A B m
31 16 18 30 syl2anc φ n Z m n A = dom m Z x A B m
32 15 31 iineq2d φ n Z m n A = m n dom m Z x A B m
33 3 32 iuneq2df φ n Z m n A = n Z m n dom m Z x A B m
34 33 adantr φ x n Z m n A n Z m n A = n Z m n dom m Z x A B m
35 13 34 eleqtrd φ x n Z m n A x n Z m n dom m Z x A B m
36 35 adantrr φ x n Z m n A lim sup m Z B x n Z m n dom m Z x A B m
37 eliun x n Z m n A n Z x m n A
38 37 biimpi x n Z m n A n Z x m n A
39 38 adantl φ x n Z m n A n Z x m n A
40 nfv n lim sup m Z m Z x A B m x = lim sup m Z B
41 nfcv _ m x
42 nfii1 _ m m n A
43 41 42 nfel m x m n A
44 1 14 43 nf3an m φ n Z x m n A
45 23 fveq1d φ m Z m Z x A B m x = x A B x
46 16 18 45 syl2anc φ n Z m n m Z x A B m x = x A B x
47 46 3adantl3 φ n Z x m n A m n m Z x A B m x = x A B x
48 eliinid x m n A m n x A
49 48 3ad2antl3 φ n Z x m n A m n x A
50 simpl1 φ n Z x m n A m n φ
51 18 3adantl3 φ n Z x m n A m n m Z
52 50 51 49 7 syl3anc φ n Z x m n A m n B W
53 27 fvmpt2 x A B W x A B x = B
54 49 52 53 syl2anc φ n Z x m n A m n x A B x = B
55 47 54 eqtrd φ n Z x m n A m n m Z x A B m x = B
56 44 55 mpteq2da φ n Z x m n A m n m Z x A B m x = m n B
57 56 fveq2d φ n Z x m n A lim sup m n m Z x A B m x = lim sup m n B
58 4 3ad2ant1 φ n Z x m n A M
59 5 eluzelz2 n Z n
60 59 3ad2ant2 φ n Z x m n A n
61 eqid n = n
62 fvexd φ n Z x m n A m Z m Z x A B m x V
63 51 62 syldan φ n Z x m n A m n m Z x A B m x V
64 44 58 60 5 61 62 63 limsupequzmpt φ n Z x m n A lim sup m Z m Z x A B m x = lim sup m n m Z x A B m x
65 14 nfci _ m Z
66 nfcv _ m n
67 simp2 φ n Z x m n A n Z
68 60 uzidd φ n Z x m n A n n
69 44 65 66 5 61 67 68 52 limsupequzmpt2 φ n Z x m n A lim sup m Z B = lim sup m n B
70 57 64 69 3eqtr4d φ n Z x m n A lim sup m Z m Z x A B m x = lim sup m Z B
71 70 3exp φ n Z x m n A lim sup m Z m Z x A B m x = lim sup m Z B
72 3 40 71 rexlimd φ n Z x m n A lim sup m Z m Z x A B m x = lim sup m Z B
73 72 adantr φ x n Z m n A n Z x m n A lim sup m Z m Z x A B m x = lim sup m Z B
74 39 73 mpd φ x n Z m n A lim sup m Z m Z x A B m x = lim sup m Z B
75 74 adantrr φ x n Z m n A lim sup m Z B lim sup m Z m Z x A B m x = lim sup m Z B
76 simprr φ x n Z m n A lim sup m Z B lim sup m Z B
77 75 76 eqeltrd φ x n Z m n A lim sup m Z B lim sup m Z m Z x A B m x
78 36 77 jca φ x n Z m n A lim sup m Z B x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x
79 78 ex φ x n Z m n A lim sup m Z B x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x
80 simpl φ x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x φ
81 simpr φ x n Z m n dom m Z x A B m x n Z m n dom m Z x A B m
82 33 eqcomd φ n Z m n dom m Z x A B m = n Z m n A
83 82 adantr φ x n Z m n dom m Z x A B m n Z m n dom m Z x A B m = n Z m n A
84 81 83 eleqtrd φ x n Z m n dom m Z x A B m x n Z m n A
85 84 adantrr φ x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x x n Z m n A
86 simprr φ x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x
87 simp2 φ x n Z m n A lim sup m Z m Z x A B m x x n Z m n A
88 74 eqcomd φ x n Z m n A lim sup m Z B = lim sup m Z m Z x A B m x
89 88 3adant3 φ x n Z m n A lim sup m Z m Z x A B m x lim sup m Z B = lim sup m Z m Z x A B m x
90 simp3 φ x n Z m n A lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x
91 89 90 eqeltrd φ x n Z m n A lim sup m Z m Z x A B m x lim sup m Z B
92 87 91 jca φ x n Z m n A lim sup m Z m Z x A B m x x n Z m n A lim sup m Z B
93 80 85 86 92 syl3anc φ x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x x n Z m n A lim sup m Z B
94 93 ex φ x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x x n Z m n A lim sup m Z B
95 79 94 impbid φ x n Z m n A lim sup m Z B x n Z m n dom m Z x A B m lim sup m Z m Z x A B m x
96 2 95 rabbida3 φ x n Z m n A | lim sup m Z B = x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x
97 12 96 eqtrd φ D = x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x
98 9 eleq2i x D x x n Z m n A | lim sup m Z B
99 98 biimpi x D x x n Z m n A | lim sup m Z B
100 rabidim1 x x n Z m n A | lim sup m Z B x n Z m n A
101 99 100 syl x D x n Z m n A
102 101 88 sylan2 φ x D lim sup m Z B = lim sup m Z m Z x A B m x
103 2 97 102 mpteq12da φ x D lim sup m Z B = x x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x
104 11 103 eqtrd φ G = x x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x
105 nfmpt1 _ m m Z x A B
106 nfcv _ x Z
107 nfmpt1 _ x x A B
108 106 107 nfmpt _ x m Z x A B
109 1 8 fmptd2f φ m Z x A B : Z SMblFn S
110 eqid x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x = x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x
111 eqid x x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x = x x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x
112 105 108 4 5 6 109 110 111 smflimsup φ x x n Z m n dom m Z x A B m | lim sup m Z m Z x A B m x lim sup m Z m Z x A B m x SMblFn S
113 104 112 eqeltrd φ G SMblFn S