Metamath Proof Explorer


Theorem smflimsuplem7

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem7.m φ M
smflimsuplem7.z Z = M
smflimsuplem7.s φ S SAlg
smflimsuplem7.f φ F : Z SMblFn S
smflimsuplem7.d D = x n Z m n dom F m | lim sup m Z F m x
smflimsuplem7.e E = k Z x m k dom F m | sup ran m k F m x * <
smflimsuplem7.h H = k Z x E k sup ran m k F m x * <
Assertion smflimsuplem7 φ D = x n Z k n dom H k | k Z H k x dom

Proof

Step Hyp Ref Expression
1 smflimsuplem7.m φ M
2 smflimsuplem7.z Z = M
3 smflimsuplem7.s φ S SAlg
4 smflimsuplem7.f φ F : Z SMblFn S
5 smflimsuplem7.d D = x n Z m n dom F m | lim sup m Z F m x
6 smflimsuplem7.e E = k Z x m k dom F m | sup ran m k F m x * <
7 smflimsuplem7.h H = k Z x E k sup ran m k F m x * <
8 5 a1i φ D = x n Z m n dom F m | lim sup m Z F m x
9 simpl φ x x n Z m n dom F m | lim sup m Z F m x φ
10 rabidim2 x x n Z m n dom F m | lim sup m Z F m x lim sup m Z F m x
11 10 adantl φ x x n Z m n dom F m | lim sup m Z F m x lim sup m Z F m x
12 rabidim1 x x n Z m n dom F m | lim sup m Z F m x x n Z m n dom F m
13 eliun x n Z m n dom F m n Z x m n dom F m
14 12 13 sylib x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m
15 14 adantl φ x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m
16 nfv n φ lim sup m Z F m x
17 nfv m φ
18 nfcv _ m lim sup
19 nfmpt1 _ m m Z F m x
20 18 19 nffv _ m lim sup m Z F m x
21 nfcv _ m
22 20 21 nfel m lim sup m Z F m x
23 17 22 nfan m φ lim sup m Z F m x
24 nfv m n Z
25 nfcv _ m x
26 nfii1 _ m m n dom F m
27 25 26 nfel m x m n dom F m
28 23 24 27 nf3an m φ lim sup m Z F m x n Z x m n dom F m
29 nfv m k n
30 28 29 nfan m φ lim sup m Z F m x n Z x m n dom F m k n
31 simpl1l φ lim sup m Z F m x n Z x m n dom F m k n φ
32 31 1 syl φ lim sup m Z F m x n Z x m n dom F m k n M
33 31 3 syl φ lim sup m Z F m x n Z x m n dom F m k n S SAlg
34 31 4 syl φ lim sup m Z F m x n Z x m n dom F m k n F : Z SMblFn S
35 2 uztrn2 n Z k n k Z
36 35 3ad2antl2 φ lim sup m Z F m x n Z x m n dom F m k n k Z
37 simpl1r φ lim sup m Z F m x n Z x m n dom F m k n lim sup m Z F m x
38 uzss k n k n
39 iinss1 k n m n dom F m m k dom F m
40 38 39 syl k n m n dom F m m k dom F m
41 40 adantl x m n dom F m k n m n dom F m m k dom F m
42 simpl x m n dom F m k n x m n dom F m
43 41 42 sseldd x m n dom F m k n x m k dom F m
44 43 3ad2antl3 φ lim sup m Z F m x n Z x m n dom F m k n x m k dom F m
45 30 32 2 33 34 6 7 36 37 44 smflimsuplem2 φ lim sup m Z F m x n Z x m n dom F m k n x dom H k
46 45 ralrimiva φ lim sup m Z F m x n Z x m n dom F m k n x dom H k
47 vex x V
48 eliin x V x k n dom H k k n x dom H k
49 47 48 ax-mp x k n dom H k k n x dom H k
50 46 49 sylibr φ lim sup m Z F m x n Z x m n dom F m x k n dom H k
51 50 3exp φ lim sup m Z F m x n Z x m n dom F m x k n dom H k
52 16 51 reximdai φ lim sup m Z F m x n Z x m n dom F m n Z x k n dom H k
53 52 imp φ lim sup m Z F m x n Z x m n dom F m n Z x k n dom H k
54 eliun x n Z k n dom H k n Z x k n dom H k
55 53 54 sylibr φ lim sup m Z F m x n Z x m n dom F m x n Z k n dom H k
56 9 11 15 55 syl21anc φ x x n Z m n dom F m | lim sup m Z F m x x n Z k n dom H k
57 13 biimpi x n Z m n dom F m n Z x m n dom F m
58 12 57 syl x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m
59 58 adantl φ x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m
60 nfv n φ
61 nfcv _ n x
62 nfv n lim sup m Z F m x
63 nfiu1 _ n n Z m n dom F m
64 62 63 nfrabw _ n x n Z m n dom F m | lim sup m Z F m x
65 61 64 nfel n x x n Z m n dom F m | lim sup m Z F m x
66 60 65 nfan n φ x x n Z m n dom F m | lim sup m Z F m x
67 nfv n k Z H k x dom
68 nfv k φ lim sup m Z F m x n Z x m n dom F m
69 simp1l φ lim sup m Z F m x n Z x m n dom F m φ
70 69 1 syl φ lim sup m Z F m x n Z x m n dom F m M
71 69 3 syl φ lim sup m Z F m x n Z x m n dom F m S SAlg
72 69 4 syl φ lim sup m Z F m x n Z x m n dom F m F : Z SMblFn S
73 simp1r φ lim sup m Z F m x n Z x m n dom F m lim sup m Z F m x
74 simp2 φ lim sup m Z F m x n Z x m n dom F m n Z
75 simp3 φ lim sup m Z F m x n Z x m n dom F m x m n dom F m
76 68 28 70 2 71 72 6 7 73 74 75 smflimsuplem6 φ lim sup m Z F m x n Z x m n dom F m k Z H k x dom
77 76 3exp φ lim sup m Z F m x n Z x m n dom F m k Z H k x dom
78 11 77 syldan φ x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m k Z H k x dom
79 66 67 78 rexlimd φ x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m k Z H k x dom
80 59 79 mpd φ x x n Z m n dom F m | lim sup m Z F m x k Z H k x dom
81 56 80 jca φ x x n Z m n dom F m | lim sup m Z F m x x n Z k n dom H k k Z H k x dom
82 rabid x x n Z k n dom H k | k Z H k x dom x n Z k n dom H k k Z H k x dom
83 81 82 sylibr φ x x n Z m n dom F m | lim sup m Z F m x x x n Z k n dom H k | k Z H k x dom
84 83 ex φ x x n Z m n dom F m | lim sup m Z F m x x x n Z k n dom H k | k Z H k x dom
85 ssrab2 x n Z k n dom H k | k Z H k x dom n Z k n dom H k
86 85 a1i φ x n Z k n dom H k | k Z H k x dom n Z k n dom H k
87 2 eluzelz2 n Z n
88 87 uzidd n Z n n
89 88 adantl φ n Z n n
90 nfv x φ n Z
91 xrltso < Or *
92 91 a1i φ n Z x E n < Or *
93 92 supexd φ n Z x E n sup ran m n F m x * < V
94 eqid x E n sup ran m n F m x * < = x E n sup ran m n F m x * <
95 90 93 94 fnmptd φ n Z x E n sup ran m n F m x * < Fn E n
96 fveq2 k = n E k = E n
97 fveq2 k = n k = n
98 97 mpteq1d k = n m k F m x = m n F m x
99 98 rneqd k = n ran m k F m x = ran m n F m x
100 99 supeq1d k = n sup ran m k F m x * < = sup ran m n F m x * <
101 96 100 mpteq12dv k = n x E k sup ran m k F m x * < = x E n sup ran m n F m x * <
102 fvex E n V
103 102 mptex x E n sup ran m n F m x * < V
104 101 7 103 fvmpt n Z H n = x E n sup ran m n F m x * <
105 104 adantl φ n Z H n = x E n sup ran m n F m x * <
106 105 fneq1d φ n Z H n Fn E n x E n sup ran m n F m x * < Fn E n
107 95 106 mpbird φ n Z H n Fn E n
108 107 fndmd φ n Z dom H n = E n
109 97 iineq1d k = n m k dom F m = m n dom F m
110 109 eleq2d k = n x m k dom F m x m n dom F m
111 100 eleq1d k = n sup ran m k F m x * < sup ran m n F m x * <
112 110 111 anbi12d k = n x m k dom F m sup ran m k F m x * < x m n dom F m sup ran m n F m x * <
113 112 rabbidva2 k = n x m k dom F m | sup ran m k F m x * < = x m n dom F m | sup ran m n F m x * <
114 id n Z n Z
115 fveq2 x = y F m x = F m y
116 115 mpteq2dv x = y m n F m x = m n F m y
117 116 rneqd x = y ran m n F m x = ran m n F m y
118 117 supeq1d x = y sup ran m n F m x * < = sup ran m n F m y * <
119 118 eleq1d x = y sup ran m n F m x * < sup ran m n F m y * <
120 119 cbvrabv x m n dom F m | sup ran m n F m x * < = y m n dom F m | sup ran m n F m y * <
121 88 ne0d n Z n
122 fvex F m V
123 122 dmex dom F m V
124 123 rgenw m n dom F m V
125 124 a1i n Z m n dom F m V
126 121 125 iinexd n Z m n dom F m V
127 120 126 rabexd n Z x m n dom F m | sup ran m n F m x * < V
128 6 113 114 127 fvmptd3 n Z E n = x m n dom F m | sup ran m n F m x * <
129 128 adantl φ n Z E n = x m n dom F m | sup ran m n F m x * <
130 ssrab2 x m n dom F m | sup ran m n F m x * < m n dom F m
131 130 a1i φ n Z x m n dom F m | sup ran m n F m x * < m n dom F m
132 129 131 eqsstrd φ n Z E n m n dom F m
133 108 132 eqsstrd φ n Z dom H n m n dom F m
134 fveq2 k = n H k = H n
135 134 dmeqd k = n dom H k = dom H n
136 135 sseq1d k = n dom H k m n dom F m dom H n m n dom F m
137 136 rspcev n n dom H n m n dom F m k n dom H k m n dom F m
138 89 133 137 syl2anc φ n Z k n dom H k m n dom F m
139 iinss k n dom H k m n dom F m k n dom H k m n dom F m
140 138 139 syl φ n Z k n dom H k m n dom F m
141 140 ralrimiva φ n Z k n dom H k m n dom F m
142 ss2iun n Z k n dom H k m n dom F m n Z k n dom H k n Z m n dom F m
143 141 142 syl φ n Z k n dom H k n Z m n dom F m
144 86 143 sstrd φ x n Z k n dom H k | k Z H k x dom n Z m n dom F m
145 82 simplbi x x n Z k n dom H k | k Z H k x dom x n Z k n dom H k
146 54 biimpi x n Z k n dom H k n Z x k n dom H k
147 145 146 syl x x n Z k n dom H k | k Z H k x dom n Z x k n dom H k
148 147 adantl φ x x n Z k n dom H k | k Z H k x dom n Z x k n dom H k
149 nfiu1 _ n n Z k n dom H k
150 67 149 nfrabw _ n x n Z k n dom H k | k Z H k x dom
151 61 150 nfel n x x n Z k n dom H k | k Z H k x dom
152 60 151 nfan n φ x x n Z k n dom H k | k Z H k x dom
153 82 simprbi x x n Z k n dom H k | k Z H k x dom k Z H k x dom
154 nfv k φ
155 nfmpt1 _ k k Z H k x
156 nfcv _ k dom
157 155 156 nfel k k Z H k x dom
158 154 157 nfan k φ k Z H k x dom
159 nfv k n Z
160 nfcv _ k x
161 nfii1 _ k k n dom H k
162 160 161 nfel k x k n dom H k
163 158 159 162 nf3an k φ k Z H k x dom n Z x k n dom H k
164 1 adantr φ n Z M
165 164 3adant3 φ n Z x k n dom H k M
166 165 3adant1r φ k Z H k x dom n Z x k n dom H k M
167 3 adantr φ n Z S SAlg
168 167 3adant3 φ n Z x k n dom H k S SAlg
169 168 3adant1r φ k Z H k x dom n Z x k n dom H k S SAlg
170 4 adantr φ n Z F : Z SMblFn S
171 170 3adant3 φ n Z x k n dom H k F : Z SMblFn S
172 171 3adant1r φ k Z H k x dom n Z x k n dom H k F : Z SMblFn S
173 simp2 φ k Z H k x dom n Z x k n dom H k n Z
174 simp3 φ k Z H k x dom n Z x k n dom H k x k n dom H k
175 simp1r φ k Z H k x dom n Z x k n dom H k k Z H k x dom
176 163 166 2 169 172 6 7 173 174 175 smflimsuplem4 φ k Z H k x dom n Z x k n dom H k lim sup m Z F m x
177 176 3exp φ k Z H k x dom n Z x k n dom H k lim sup m Z F m x
178 153 177 sylan2 φ x x n Z k n dom H k | k Z H k x dom n Z x k n dom H k lim sup m Z F m x
179 152 62 178 rexlimd φ x x n Z k n dom H k | k Z H k x dom n Z x k n dom H k lim sup m Z F m x
180 148 179 mpd φ x x n Z k n dom H k | k Z H k x dom lim sup m Z F m x
181 180 ralrimiva φ x x n Z k n dom H k | k Z H k x dom lim sup m Z F m x
182 144 181 jca φ x n Z k n dom H k | k Z H k x dom n Z m n dom F m x x n Z k n dom H k | k Z H k x dom lim sup m Z F m x
183 nfrab1 _ x x n Z k n dom H k | k Z H k x dom
184 nfcv _ x n Z m n dom F m
185 183 184 ssrabf x n Z k n dom H k | k Z H k x dom x n Z m n dom F m | lim sup m Z F m x x n Z k n dom H k | k Z H k x dom n Z m n dom F m x x n Z k n dom H k | k Z H k x dom lim sup m Z F m x
186 182 185 sylibr φ x n Z k n dom H k | k Z H k x dom x n Z m n dom F m | lim sup m Z F m x
187 186 sseld φ x x n Z k n dom H k | k Z H k x dom x x n Z m n dom F m | lim sup m Z F m x
188 84 187 impbid φ x x n Z m n dom F m | lim sup m Z F m x x x n Z k n dom H k | k Z H k x dom
189 188 alrimiv φ x x x n Z m n dom F m | lim sup m Z F m x x x n Z k n dom H k | k Z H k x dom
190 nfrab1 _ x x n Z m n dom F m | lim sup m Z F m x
191 190 183 cleqf x n Z m n dom F m | lim sup m Z F m x = x n Z k n dom H k | k Z H k x dom x x x n Z m n dom F m | lim sup m Z F m x x x n Z k n dom H k | k Z H k x dom
192 189 191 sylibr φ x n Z m n dom F m | lim sup m Z F m x = x n Z k n dom H k | k Z H k x dom
193 8 192 eqtrd φ D = x n Z k n dom H k | k Z H k x dom