Metamath Proof Explorer


Theorem smflimsuplem2

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem2.p 𝑚 𝜑
smflimsuplem2.m ( 𝜑𝑀 ∈ ℤ )
smflimsuplem2.z 𝑍 = ( ℤ𝑀 )
smflimsuplem2.s ( 𝜑𝑆 ∈ SAlg )
smflimsuplem2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
smflimsuplem2.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
smflimsuplem2.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
smflimsuplem2.n ( 𝜑𝑛𝑍 )
smflimsuplem2.r ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ )
smflimsuplem2.x ( 𝜑𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) )
Assertion smflimsuplem2 ( 𝜑𝑋 ∈ dom ( 𝐻𝑛 ) )

Proof

Step Hyp Ref Expression
1 smflimsuplem2.p 𝑚 𝜑
2 smflimsuplem2.m ( 𝜑𝑀 ∈ ℤ )
3 smflimsuplem2.z 𝑍 = ( ℤ𝑀 )
4 smflimsuplem2.s ( 𝜑𝑆 ∈ SAlg )
5 smflimsuplem2.f ( 𝜑𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) )
6 smflimsuplem2.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
7 smflimsuplem2.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
8 smflimsuplem2.n ( 𝜑𝑛𝑍 )
9 smflimsuplem2.r ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ )
10 smflimsuplem2.x ( 𝜑𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) )
11 eqid ( ℤ𝑛 ) = ( ℤ𝑛 )
12 8 3 eleqtrdi ( 𝜑𝑛 ∈ ( ℤ𝑀 ) )
13 uzss ( 𝑛 ∈ ( ℤ𝑀 ) → ( ℤ𝑛 ) ⊆ ( ℤ𝑀 ) )
14 12 13 syl ( 𝜑 → ( ℤ𝑛 ) ⊆ ( ℤ𝑀 ) )
15 14 3 sseqtrrdi ( 𝜑 → ( ℤ𝑛 ) ⊆ 𝑍 )
16 15 adantr ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ℤ𝑛 ) ⊆ 𝑍 )
17 simpr ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚 ∈ ( ℤ𝑛 ) )
18 16 17 sseldd ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
19 4 adantr ( ( 𝜑𝑚𝑍 ) → 𝑆 ∈ SAlg )
20 5 ffvelrnda ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) )
21 eqid dom ( 𝐹𝑚 ) = dom ( 𝐹𝑚 )
22 19 20 21 smff ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
23 18 22 syldan ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( 𝐹𝑚 ) : dom ( 𝐹𝑚 ) ⟶ ℝ )
24 iinss2 ( 𝑚 ∈ ( ℤ𝑛 ) → 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ dom ( 𝐹𝑚 ) )
25 24 adantl ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ⊆ dom ( 𝐹𝑚 ) )
26 10 adantr ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) )
27 25 26 sseldd ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑋 ∈ dom ( 𝐹𝑚 ) )
28 23 27 ffvelrnd ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ ℝ )
29 nfmpt1 𝑚 ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
30 nfmpt1 𝑚 ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
31 eluzelz ( 𝑛 ∈ ( ℤ𝑀 ) → 𝑛 ∈ ℤ )
32 12 31 syl ( 𝜑𝑛 ∈ ℤ )
33 eqid ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
34 1 28 33 fmptdf ( 𝜑 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) : ( ℤ𝑛 ) ⟶ ℝ )
35 34 ffnd ( 𝜑 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ𝑛 ) )
36 nfcv 𝑚 ( ℤ𝑀 )
37 fvexd ( ( 𝜑𝑚 ∈ ( ℤ𝑀 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ V )
38 36 1 37 mptfnd ( 𝜑 → ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ𝑀 ) )
39 33 a1i ( 𝜑 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) )
40 fvexd ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ V )
41 39 40 fvmpt2d ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
42 18 3 eleqtrdi ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚 ∈ ( ℤ𝑀 ) )
43 eqid ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
44 43 fvmpt2 ( ( 𝑚 ∈ ( ℤ𝑀 ) ∧ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ∈ V ) → ( ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
45 42 40 44 syl2anc ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
46 41 45 eqtr4d ( ( 𝜑𝑚 ∈ ( ℤ𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) )
47 1 29 30 32 35 2 38 32 46 limsupequz ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
48 3 eqcomi ( ℤ𝑀 ) = 𝑍
49 48 mpteq1i ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) = ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
50 49 fveq2i ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) )
51 50 a1i ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑀 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
52 47 51 eqtrd ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) )
53 9 renepnfd ( 𝜑 → ( lim sup ‘ ( 𝑚𝑍 ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ )
54 52 53 eqnetrd ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ )
55 1 11 28 54 limsupubuzmpt ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ≤ 𝑦 )
56 uzid ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ𝑛 ) )
57 ne0i ( 𝑛 ∈ ( ℤ𝑛 ) → ( ℤ𝑛 ) ≠ ∅ )
58 32 56 57 3syl ( 𝜑 → ( ℤ𝑛 ) ≠ ∅ )
59 1 58 28 supxrre3rnmpt ( 𝜑 → ( sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ𝑛 ) ( ( 𝐹𝑚 ) ‘ 𝑋 ) ≤ 𝑦 ) )
60 55 59 mpbird ( 𝜑 → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ )
61 10 60 jca ( 𝜑 → ( 𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) )
62 fveq2 ( 𝑥 = 𝑦 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑚 ) ‘ 𝑦 ) )
63 62 mpteq2dv ( 𝑥 = 𝑦 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
64 63 rneqd ( 𝑥 = 𝑦 → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) )
65 64 supeq1d ( 𝑥 = 𝑦 → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) )
66 65 eleq1d ( 𝑥 = 𝑦 → ( sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ) )
67 66 cbvrabv { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑦 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ }
68 67 eleq2i ( 𝑋 ∈ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ 𝑋 ∈ { 𝑦 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } )
69 fveq2 ( 𝑦 = 𝑋 → ( ( 𝐹𝑚 ) ‘ 𝑦 ) = ( ( 𝐹𝑚 ) ‘ 𝑋 ) )
70 69 mpteq2dv ( 𝑦 = 𝑋 → ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) )
71 70 rneqd ( 𝑦 = 𝑋 → ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) = ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) )
72 71 supeq1d ( 𝑦 = 𝑋 → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) )
73 72 eleq1d ( 𝑦 = 𝑋 → ( sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) )
74 73 elrab ( 𝑋 ∈ { 𝑦 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) )
75 68 74 bitri ( 𝑋 ∈ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) )
76 61 75 sylibr ( 𝜑𝑋 ∈ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
77 id ( 𝜑𝜑 )
78 7 a1i ( 𝜑𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) )
79 nfcv 𝑥 𝑍
80 nfrab1 𝑥 { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
81 79 80 nfmpt 𝑥 ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
82 6 81 nfcxfr 𝑥 𝐸
83 nfcv 𝑥 𝑛
84 82 83 nffv 𝑥 ( 𝐸𝑛 )
85 fvex ( 𝐸𝑛 ) ∈ V
86 84 85 mptexf ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V
87 86 a1i ( ( 𝜑𝑛𝑍 ) → ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V )
88 78 87 fvmpt2d ( ( 𝜑𝑛𝑍 ) → ( 𝐻𝑛 ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
89 77 8 88 syl2anc ( 𝜑 → ( 𝐻𝑛 ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
90 89 dmeqd ( 𝜑 → dom ( 𝐻𝑛 ) = dom ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
91 nfcv 𝑦 ( 𝐸𝑛 )
92 nfcv 𝑦 sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < )
93 nfcv 𝑥 sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < )
94 84 91 92 93 65 cbvmptf ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) )
95 xrltso < Or ℝ*
96 95 supex sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V
97 96 a1i ( ( 𝜑𝑦 ∈ ( 𝐸𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V )
98 94 97 dmmptd ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸𝑛 ) )
99 eqid { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
100 fvex ( 𝐹𝑚 ) ∈ V
101 100 dmex dom ( 𝐹𝑚 ) ∈ V
102 101 rgenw 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V
103 102 a1i ( 𝜑 → ∀ 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V )
104 58 103 iinexd ( 𝜑 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∈ V )
105 99 104 rabexd ( 𝜑 → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V )
106 6 fvmpt2 ( ( 𝑛𝑍 ∧ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) → ( 𝐸𝑛 ) = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
107 8 105 106 syl2anc ( 𝜑 → ( 𝐸𝑛 ) = { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
108 90 98 107 3eqtrrd ( 𝜑 → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = dom ( 𝐻𝑛 ) )
109 76 108 eleqtrd ( 𝜑𝑋 ∈ dom ( 𝐻𝑛 ) )