| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem2.p |
⊢ Ⅎ 𝑚 𝜑 |
| 2 |
|
smflimsuplem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
smflimsuplem2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
smflimsuplem2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 5 |
|
smflimsuplem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
|
smflimsuplem2.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 7 |
|
smflimsuplem2.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 8 |
|
smflimsuplem2.n |
⊢ ( 𝜑 → 𝑛 ∈ 𝑍 ) |
| 9 |
|
smflimsuplem2.r |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 10 |
|
smflimsuplem2.x |
⊢ ( 𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 11 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
| 12 |
8 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 |
|
uzss |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 15 |
14 3
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 18 |
16 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 20 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 21 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 22 |
19 20 21
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 23 |
18 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 24 |
|
iinss2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ dom ( 𝐹 ‘ 𝑚 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ dom ( 𝐹 ‘ 𝑚 ) ) |
| 26 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 28 |
23 27
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) |
| 29 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 30 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 31 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
| 32 |
12 31
|
syl |
⊢ ( 𝜑 → 𝑛 ∈ ℤ ) |
| 33 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 34 |
1 28 33
|
fmptdf |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) : ( ℤ≥ ‘ 𝑛 ) ⟶ ℝ ) |
| 35 |
34
|
ffnd |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ≥ ‘ 𝑛 ) ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑀 ) |
| 37 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) |
| 38 |
36 1 37
|
mptfnd |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 39 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 40 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) |
| 41 |
39 40
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 42 |
18 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 43 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 44 |
43
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 45 |
42 40 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 46 |
41 45
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) ) |
| 47 |
1 29 30 32 35 2 38 32 46
|
limsupequz |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 48 |
3
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
| 49 |
48
|
mpteq1i |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 50 |
49
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 52 |
47 51
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 53 |
9
|
renepnfd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ ) |
| 54 |
52 53
|
eqnetrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ ) |
| 55 |
1 11 28 54
|
limsupubuzmpt |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ≤ 𝑦 ) |
| 56 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 57 |
|
ne0i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 58 |
32 56 57
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
| 59 |
1 58 28
|
supxrre3rnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ≤ 𝑦 ) ) |
| 60 |
55 59
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) |
| 61 |
10 60
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 63 |
62
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 64 |
63
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 65 |
64
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 67 |
66
|
cbvrabv |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } |
| 68 |
67
|
eleq2i |
⊢ ( 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ 𝑋 ∈ { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 69 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 70 |
69
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 71 |
70
|
rneqd |
⊢ ( 𝑦 = 𝑋 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 72 |
71
|
supeq1d |
⊢ ( 𝑦 = 𝑋 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ) |
| 73 |
72
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 74 |
73
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 75 |
68 74
|
bitri |
⊢ ( 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 76 |
61 75
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 77 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 78 |
7
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 80 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 81 |
79 80
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 82 |
6 81
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐸 |
| 83 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
| 84 |
82 83
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐸 ‘ 𝑛 ) |
| 85 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
| 86 |
84 85
|
mptexf |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
| 87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V ) |
| 88 |
78 87
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 89 |
77 8 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 90 |
89
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝑛 ) = dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 91 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐸 ‘ 𝑛 ) |
| 92 |
|
nfcv |
⊢ Ⅎ 𝑦 sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) |
| 93 |
|
nfcv |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) |
| 94 |
84 91 92 93 65
|
cbvmptf |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 95 |
|
xrltso |
⊢ < Or ℝ* |
| 96 |
95
|
supex |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V |
| 97 |
96
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐸 ‘ 𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V ) |
| 98 |
94 97
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝑛 ) ) |
| 99 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 100 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 101 |
100
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 102 |
101
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 103 |
102
|
a1i |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 104 |
58 103
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 105 |
99 104
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
| 106 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 107 |
8 105 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 108 |
90 98 107
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = dom ( 𝐻 ‘ 𝑛 ) ) |
| 109 |
76 108
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ dom ( 𝐻 ‘ 𝑛 ) ) |