Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem2.p |
⊢ Ⅎ 𝑚 𝜑 |
2 |
|
smflimsuplem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
smflimsuplem2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
smflimsuplem2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
5 |
|
smflimsuplem2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
6 |
|
smflimsuplem2.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
7 |
|
smflimsuplem2.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
8 |
|
smflimsuplem2.n |
⊢ ( 𝜑 → 𝑛 ∈ 𝑍 ) |
9 |
|
smflimsuplem2.r |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ ) |
10 |
|
smflimsuplem2.x |
⊢ ( 𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
11 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑛 ) |
12 |
8 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
|
uzss |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
15 |
14 3
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
18 |
16 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
20 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
21 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
22 |
19 20 21
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
23 |
18 22
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
24 |
|
iinss2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ dom ( 𝐹 ‘ 𝑚 ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ⊆ dom ( 𝐹 ‘ 𝑚 ) ) |
26 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
27 |
25 26
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑋 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
28 |
23 27
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ ℝ ) |
29 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
30 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
31 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
32 |
12 31
|
syl |
⊢ ( 𝜑 → 𝑛 ∈ ℤ ) |
33 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
34 |
1 28 33
|
fmptdf |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) : ( ℤ≥ ‘ 𝑛 ) ⟶ ℝ ) |
35 |
34
|
ffnd |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ≥ ‘ 𝑛 ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑀 ) |
37 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) |
38 |
36 1 37
|
mptfnd |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
39 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
40 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) |
41 |
39 40
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
42 |
18 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
43 |
|
eqid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
44 |
43
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ∈ V ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
45 |
42 40 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
46 |
41 45
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) ) |
47 |
1 29 30 32 35 2 38 32 46
|
limsupequz |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
48 |
3
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
49 |
48
|
mpteq1i |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
50 |
49
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
51 |
50
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
52 |
47 51
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) = ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
53 |
9
|
renepnfd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ ) |
54 |
52 53
|
eqnetrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ≠ +∞ ) |
55 |
1 11 28 54
|
limsupubuzmpt |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ≤ 𝑦 ) |
56 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
57 |
|
ne0i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
58 |
32 56 57
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑛 ) ≠ ∅ ) |
59 |
1 58 28
|
supxrre3rnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ≤ 𝑦 ) ) |
60 |
55 59
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) |
61 |
10 60
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
62 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
63 |
62
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
64 |
63
|
rneqd |
⊢ ( 𝑥 = 𝑦 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
65 |
64
|
supeq1d |
⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
66 |
65
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ) ) |
67 |
66
|
cbvrabv |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } |
68 |
67
|
eleq2i |
⊢ ( 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ 𝑋 ∈ { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } ) |
69 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
70 |
69
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
71 |
70
|
rneqd |
⊢ ( 𝑦 = 𝑋 → ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
72 |
71
|
supeq1d |
⊢ ( 𝑦 = 𝑋 → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ) |
73 |
72
|
eleq1d |
⊢ ( 𝑦 = 𝑋 → ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
74 |
73
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
75 |
68 74
|
bitri |
⊢ ( 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ↔ ( 𝑋 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) , ℝ* , < ) ∈ ℝ ) ) |
76 |
61 75
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
77 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
78 |
7
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
80 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
81 |
79 80
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
82 |
6 81
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐸 |
83 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑛 |
84 |
82 83
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐸 ‘ 𝑛 ) |
85 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
86 |
84 85
|
mptexf |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
87 |
86
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V ) |
88 |
78 87
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
89 |
77 8 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
90 |
89
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝑛 ) = dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
91 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐸 ‘ 𝑛 ) |
92 |
|
nfcv |
⊢ Ⅎ 𝑦 sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) |
93 |
|
nfcv |
⊢ Ⅎ 𝑥 sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) |
94 |
84 91 92 93 65
|
cbvmptf |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑦 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
95 |
|
xrltso |
⊢ < Or ℝ* |
96 |
95
|
supex |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V |
97 |
96
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐸 ‘ 𝑛 ) ) → sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) , ℝ* , < ) ∈ V ) |
98 |
94 97
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝑛 ) ) |
99 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
100 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
101 |
100
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
102 |
101
|
rgenw |
⊢ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V |
103 |
102
|
a1i |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
104 |
58 103
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
105 |
99 104
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
106 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
107 |
8 105 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑛 ) = { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
108 |
90 98 107
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = dom ( 𝐻 ‘ 𝑛 ) ) |
109 |
76 108
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ dom ( 𝐻 ‘ 𝑛 ) ) |