| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem2.p | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 2 |  | smflimsuplem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | smflimsuplem2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | smflimsuplem2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 5 |  | smflimsuplem2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 |  | smflimsuplem2.e | ⊢ 𝐸  =  ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 7 |  | smflimsuplem2.h | ⊢ 𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 8 |  | smflimsuplem2.n | ⊢ ( 𝜑  →  𝑛  ∈  𝑍 ) | 
						
							| 9 |  | smflimsuplem2.r | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ∈  ℝ ) | 
						
							| 10 |  | smflimsuplem2.x | ⊢ ( 𝜑  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 11 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑛 )  =  ( ℤ≥ ‘ 𝑛 ) | 
						
							| 12 | 8 3 | eleqtrdi | ⊢ ( 𝜑  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 13 |  | uzss | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 15 | 14 3 | sseqtrrdi | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑛 )  ⊆  𝑍 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ℤ≥ ‘ 𝑛 )  ⊆  𝑍 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 18 | 16 17 | sseldd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 20 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 21 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 22 | 19 20 21 | smff | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 23 | 18 22 | syldan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 ) : dom  ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) | 
						
							| 24 |  | iinss2 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ⊆  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 26 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 27 | 25 26 | sseldd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑋  ∈  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 28 | 23 27 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 29 |  | nfmpt1 | ⊢ Ⅎ 𝑚 ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 30 |  | nfmpt1 | ⊢ Ⅎ 𝑚 ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 31 |  | eluzelz | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑛  ∈  ℤ ) | 
						
							| 32 | 12 31 | syl | ⊢ ( 𝜑  →  𝑛  ∈  ℤ ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 34 | 1 28 33 | fmptdf | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) : ( ℤ≥ ‘ 𝑛 ) ⟶ ℝ ) | 
						
							| 35 | 34 | ffnd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  Fn  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑚 ( ℤ≥ ‘ 𝑀 ) | 
						
							| 37 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 38 | 36 1 37 | mptfnd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  Fn  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 39 | 33 | a1i | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 40 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V ) | 
						
							| 41 | 39 40 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 42 | 18 3 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 43 |  | eqid | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 44 | 43 | fvmpt2 | ⊢ ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ∈  V )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 45 | 42 40 44 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 46 | 41 45 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 )  =  ( ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ‘ 𝑚 ) ) | 
						
							| 47 | 1 29 30 32 35 2 38 32 46 | limsupequz | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 48 | 3 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 )  =  𝑍 | 
						
							| 49 | 48 | mpteq1i | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 50 | 49 | fveq2i | ⊢ ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 51 | 50 | a1i | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 52 | 47 51 | eqtrd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  =  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) | 
						
							| 53 | 9 | renepnfd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ≠  +∞ ) | 
						
							| 54 | 52 53 | eqnetrd | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) )  ≠  +∞ ) | 
						
							| 55 | 1 11 28 54 | limsupubuzmpt | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ≤  𝑦 ) | 
						
							| 56 |  | uzid | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 57 |  | ne0i | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 58 | 32 56 57 | 3syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑛 )  ≠  ∅ ) | 
						
							| 59 | 1 58 28 | supxrre3rnmpt | ⊢ ( 𝜑  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 )  ≤  𝑦 ) ) | 
						
							| 60 | 55 59 | mpbird | ⊢ ( 𝜑  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 61 | 10 60 | jca | ⊢ ( 𝜑  →  ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) | 
						
							| 63 | 62 | mpteq2dv | ⊢ ( 𝑥  =  𝑦  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 64 | 63 | rneqd | ⊢ ( 𝑥  =  𝑦  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) | 
						
							| 65 | 64 | supeq1d | ⊢ ( 𝑥  =  𝑦  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 66 | 65 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 67 | 66 | cbvrabv | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 68 | 67 | eleq2i | ⊢ ( 𝑋  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↔  𝑋  ∈  { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 )  =  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) | 
						
							| 70 | 69 | mpteq2dv | ⊢ ( 𝑦  =  𝑋  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 71 | 70 | rneqd | ⊢ ( 𝑦  =  𝑋  →  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) )  =  ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) | 
						
							| 72 | 71 | supeq1d | ⊢ ( 𝑦  =  𝑋  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 73 | 72 | eleq1d | ⊢ ( 𝑦  =  𝑋  →  ( sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 74 | 73 | elrab | ⊢ ( 𝑋  ∈  { 𝑦  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↔  ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 75 | 68 74 | bitri | ⊢ ( 𝑋  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ↔  ( 𝑋  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∧  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ,  ℝ* ,   <  )  ∈  ℝ ) ) | 
						
							| 76 | 61 75 | sylibr | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 77 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 78 | 7 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑥 𝑍 | 
						
							| 80 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 81 | 79 80 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛  ∈  𝑍  ↦  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 82 | 6 81 | nfcxfr | ⊢ Ⅎ 𝑥 𝐸 | 
						
							| 83 |  | nfcv | ⊢ Ⅎ 𝑥 𝑛 | 
						
							| 84 | 82 83 | nffv | ⊢ Ⅎ 𝑥 ( 𝐸 ‘ 𝑛 ) | 
						
							| 85 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 86 | 84 85 | mptexf | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 87 | 86 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 88 | 78 87 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 89 | 77 8 88 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑛 )  =  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 90 | 89 | dmeqd | ⊢ ( 𝜑  →  dom  ( 𝐻 ‘ 𝑛 )  =  dom  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 91 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐸 ‘ 𝑛 ) | 
						
							| 92 |  | nfcv | ⊢ Ⅎ 𝑦 sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) | 
						
							| 93 |  | nfcv | ⊢ Ⅎ 𝑥 sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) | 
						
							| 94 | 84 91 92 93 65 | cbvmptf | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑦  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 95 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 96 | 95 | supex | ⊢ sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 97 | 96 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐸 ‘ 𝑛 ) )  →  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 98 | 94 97 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  ↦  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  ) )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 99 |  | eqid | ⊢ { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } | 
						
							| 100 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 101 | 100 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 102 | 101 | rgenw | ⊢ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 103 | 102 | a1i | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 104 | 58 103 | iinexd | ⊢ ( 𝜑  →  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 105 | 99 104 | rabexd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V ) | 
						
							| 106 | 6 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  ∈  V )  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 107 | 8 105 106 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑛 )  =  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ } ) | 
						
							| 108 | 90 98 107 | 3eqtrrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ∩  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) dom  ( 𝐹 ‘ 𝑚 )  ∣  sup ( ran  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑛 )  ↦  ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ,  ℝ* ,   <  )  ∈  ℝ }  =  dom  ( 𝐻 ‘ 𝑛 ) ) | 
						
							| 109 | 76 108 | eleqtrd | ⊢ ( 𝜑  →  𝑋  ∈  dom  ( 𝐻 ‘ 𝑛 ) ) |