Metamath Proof Explorer


Theorem limsupubuzmpt

Description: If the limsup is not +oo , then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupubuzmpt.j 𝑗 𝜑
limsupubuzmpt.z 𝑍 = ( ℤ𝑀 )
limsupubuzmpt.b ( ( 𝜑𝑗𝑍 ) → 𝐵 ∈ ℝ )
limsupubuzmpt.n ( 𝜑 → ( lim sup ‘ ( 𝑗𝑍𝐵 ) ) ≠ +∞ )
Assertion limsupubuzmpt ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑥 )

Proof

Step Hyp Ref Expression
1 limsupubuzmpt.j 𝑗 𝜑
2 limsupubuzmpt.z 𝑍 = ( ℤ𝑀 )
3 limsupubuzmpt.b ( ( 𝜑𝑗𝑍 ) → 𝐵 ∈ ℝ )
4 limsupubuzmpt.n ( 𝜑 → ( lim sup ‘ ( 𝑗𝑍𝐵 ) ) ≠ +∞ )
5 nfmpt1 𝑗 ( 𝑗𝑍𝐵 )
6 eqid ( 𝑗𝑍𝐵 ) = ( 𝑗𝑍𝐵 )
7 1 3 6 fmptdf ( 𝜑 → ( 𝑗𝑍𝐵 ) : 𝑍 ⟶ ℝ )
8 5 2 7 4 limsupubuz ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 ( ( 𝑗𝑍𝐵 ) ‘ 𝑗 ) ≤ 𝑦 )
9 6 a1i ( 𝜑 → ( 𝑗𝑍𝐵 ) = ( 𝑗𝑍𝐵 ) )
10 9 3 fvmpt2d ( ( 𝜑𝑗𝑍 ) → ( ( 𝑗𝑍𝐵 ) ‘ 𝑗 ) = 𝐵 )
11 10 breq1d ( ( 𝜑𝑗𝑍 ) → ( ( ( 𝑗𝑍𝐵 ) ‘ 𝑗 ) ≤ 𝑦𝐵𝑦 ) )
12 1 11 ralbida ( 𝜑 → ( ∀ 𝑗𝑍 ( ( 𝑗𝑍𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∀ 𝑗𝑍 𝐵𝑦 ) )
13 12 rexbidv ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 ( ( 𝑗𝑍𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑦 ) )
14 8 13 mpbid ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑦 )
15 breq2 ( 𝑦 = 𝑥 → ( 𝐵𝑦𝐵𝑥 ) )
16 15 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑗𝑍 𝐵𝑦 ↔ ∀ 𝑗𝑍 𝐵𝑥 ) )
17 16 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑥 )
18 14 17 sylib ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗𝑍 𝐵𝑥 )