| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuzmpt.j |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
limsupubuzmpt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
limsupubuzmpt.b |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
limsupubuzmpt.n |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) ≠ +∞ ) |
| 5 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) |
| 7 |
1 3 6
|
fmptdf |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ℝ ) |
| 8 |
5 2 7 4
|
limsupubuz |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ) |
| 9 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ) |
| 10 |
9 3
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) = 𝐵 ) |
| 11 |
10
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
| 12 |
1 11
|
ralbida |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( ( 𝑗 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑗 ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ) |
| 15 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥 ) ) |
| 16 |
15
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) ) |
| 17 |
16
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |
| 18 |
14 17
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝐵 ≤ 𝑥 ) |