| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smflimsuplem4.1 |  |-  F/ n ph | 
						
							| 2 |  | smflimsuplem4.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | smflimsuplem4.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | smflimsuplem4.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 5 |  | smflimsuplem4.f |  |-  ( ph -> F : Z --> ( SMblFn ` S ) ) | 
						
							| 6 |  | smflimsuplem4.e |  |-  E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 7 |  | smflimsuplem4.h |  |-  H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 8 |  | smflimsuplem4.n |  |-  ( ph -> N e. Z ) | 
						
							| 9 |  | smflimsuplem4.i |  |-  ( ph -> x e. |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) ) | 
						
							| 10 |  | smflimsuplem4.c |  |-  ( ph -> ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) | 
						
							| 11 |  | nfv |  |-  F/ m ph | 
						
							| 12 | 3 8 | eluzelz2d |  |-  ( ph -> N e. ZZ ) | 
						
							| 13 |  | eqid |  |-  ( ZZ>= ` N ) = ( ZZ>= ` N ) | 
						
							| 14 |  | fvexd |  |-  ( ( ph /\ m e. Z ) -> ( ( F ` m ) ` x ) e. _V ) | 
						
							| 15 |  | fvexd |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. _V ) | 
						
							| 16 | 11 2 12 3 13 14 15 | limsupequzmpt |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> S e. SAlg ) | 
						
							| 18 | 3 8 | uzssd2 |  |-  ( ph -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. Z ) | 
						
							| 20 | 5 | ffvelcdmda |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 21 | 19 20 | syldan |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) e. ( SMblFn ` S ) ) | 
						
							| 22 |  | eqid |  |-  dom ( F ` m ) = dom ( F ` m ) | 
						
							| 23 | 17 21 22 | smff |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) | 
						
							| 24 | 3 6 7 19 | smflimsuplem1 |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> dom ( H ` m ) C_ dom ( F ` m ) ) | 
						
							| 25 | 9 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 27 |  | fveq2 |  |-  ( n = m -> ( H ` n ) = ( H ` m ) ) | 
						
							| 28 | 27 | dmeqd |  |-  ( n = m -> dom ( H ` n ) = dom ( H ` m ) ) | 
						
							| 29 | 28 | eleq2d |  |-  ( n = m -> ( x e. dom ( H ` n ) <-> x e. dom ( H ` m ) ) ) | 
						
							| 30 | 25 26 29 | eliind |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. dom ( H ` m ) ) | 
						
							| 31 | 24 30 | sseldd |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. dom ( F ` m ) ) | 
						
							| 32 | 23 31 | ffvelcdmd |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. RR ) | 
						
							| 33 | 32 | rexrd |  |-  ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. RR* ) | 
						
							| 34 | 11 12 13 33 | limsupvaluzmpt |  |-  ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` x ) ) ) = inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 35 | 16 34 | eqtrd |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 36 | 18 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ZZ>= ` N ) C_ Z ) | 
						
							| 37 |  | simpr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) | 
						
							| 38 | 36 37 | sseldd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) | 
						
							| 39 | 7 | a1i |  |-  ( ph -> H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) ) | 
						
							| 40 |  | fvex |  |-  ( E ` n ) e. _V | 
						
							| 41 | 40 | mptex |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V | 
						
							| 42 | 41 | a1i |  |-  ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) | 
						
							| 43 | 39 42 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 44 | 38 43 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 45 | 44 | dmeqd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( H ` n ) = dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 46 |  | xrltso |  |-  < Or RR* | 
						
							| 47 | 46 | supex |  |-  sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. _V | 
						
							| 48 |  | eqid |  |-  ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 49 | 47 48 | dmmpti |  |-  dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) | 
						
							| 50 | 49 | a1i |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) ) | 
						
							| 51 | 45 50 | eqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( H ` n ) = ( E ` n ) ) | 
						
							| 52 | 1 51 | iineq2d |  |-  ( ph -> |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) = |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) | 
						
							| 53 | 9 52 | eleqtrd |  |-  ( ph -> x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) | 
						
							| 55 |  | eliinid |  |-  ( ( x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) /\ n e. ( ZZ>= ` N ) ) -> x e. ( E ` n ) ) | 
						
							| 56 | 54 37 55 | syl2anc |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. ( E ` n ) ) | 
						
							| 57 | 47 | a1i |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ x e. ( E ` n ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. _V ) | 
						
							| 58 | 44 57 | fvmpt2d |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ x e. ( E ` n ) ) -> ( ( H ` n ) ` x ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 59 | 56 58 | mpdan |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 60 |  | eqid |  |-  { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } | 
						
							| 61 | 3 | eluzelz2 |  |-  ( n e. Z -> n e. ZZ ) | 
						
							| 62 |  | eqid |  |-  ( ZZ>= ` n ) = ( ZZ>= ` n ) | 
						
							| 63 | 61 62 | uzn0d |  |-  ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) | 
						
							| 64 |  | fvex |  |-  ( F ` m ) e. _V | 
						
							| 65 | 64 | dmex |  |-  dom ( F ` m ) e. _V | 
						
							| 66 | 65 | rgenw |  |-  A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V | 
						
							| 67 | 66 | a1i |  |-  ( n e. Z -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 68 | 63 67 | iinexd |  |-  ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) | 
						
							| 70 | 60 69 | rabexd |  |-  ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 71 | 38 70 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) | 
						
							| 72 | 6 | fvmpt2 |  |-  ( ( n e. Z /\ { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 73 | 38 71 72 | syl2anc |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 74 | 56 73 | eleqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) | 
						
							| 75 |  | rabid |  |-  ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 76 | 74 75 | sylib |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) ) | 
						
							| 77 | 76 | simprd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) | 
						
							| 78 | 59 77 | eqeltrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) e. RR ) | 
						
							| 79 | 1 59 | mpteq2da |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) = ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) | 
						
							| 80 |  | nfv |  |-  F/ k ph | 
						
							| 81 |  | fveq2 |  |-  ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) | 
						
							| 82 | 81 | mpteq1d |  |-  ( n = k -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 83 | 82 | rneqd |  |-  ( n = k -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 84 | 83 | supeq1d |  |-  ( n = k -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 85 |  | nfv |  |-  F/ m ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) | 
						
							| 86 |  | eluzelz |  |-  ( n e. ( ZZ>= ` N ) -> n e. ZZ ) | 
						
							| 87 | 86 | adantr |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n e. ZZ ) | 
						
							| 88 |  | simpr |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k = ( n + 1 ) ) | 
						
							| 89 | 87 | peano2zd |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( n + 1 ) e. ZZ ) | 
						
							| 90 | 88 89 | eqeltrd |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. ZZ ) | 
						
							| 91 | 87 | zred |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n e. RR ) | 
						
							| 92 | 90 | zred |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. RR ) | 
						
							| 93 | 91 | ltp1d |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n < ( n + 1 ) ) | 
						
							| 94 | 88 | eqcomd |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( n + 1 ) = k ) | 
						
							| 95 | 93 94 | breqtrd |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n < k ) | 
						
							| 96 | 91 92 95 | ltled |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n <_ k ) | 
						
							| 97 | 62 87 90 96 | eluzd |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. ( ZZ>= ` n ) ) | 
						
							| 98 |  | uzss |  |-  ( k e. ( ZZ>= ` n ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` n ) ) | 
						
							| 99 | 97 98 | syl |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` n ) ) | 
						
							| 100 |  | fvexd |  |-  ( ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) /\ m e. ( ZZ>= ` k ) ) -> ( ( F ` m ) ` x ) e. _V ) | 
						
							| 101 | 85 99 100 | rnmptss2 |  |-  ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 102 | 101 | 3adant1 |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 103 |  | nfv |  |-  F/ m ( ph /\ n e. ( ZZ>= ` N ) ) | 
						
							| 104 |  | eqid |  |-  ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) | 
						
							| 105 |  | simpll |  |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph ) | 
						
							| 106 | 38 105 | syldanl |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ph ) | 
						
							| 107 | 13 | uztrn2 |  |-  ( ( n e. ( ZZ>= ` N ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 108 | 107 | adantll |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) | 
						
							| 109 | 106 108 32 | syl2anc |  |-  ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` x ) e. RR ) | 
						
							| 110 | 103 104 109 | rnmptssd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR ) | 
						
							| 111 |  | ressxr |  |-  RR C_ RR* | 
						
							| 112 | 111 | a1i |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> RR C_ RR* ) | 
						
							| 113 | 110 112 | sstrd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) | 
						
							| 114 | 113 | 3adant3 |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) | 
						
							| 115 |  | supxrss |  |-  ( ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) /\ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) -> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) <_ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 116 | 102 114 115 | syl2anc |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) <_ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) | 
						
							| 117 | 3 | fvexi |  |-  Z e. _V | 
						
							| 118 | 117 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 119 |  | fvexd |  |-  ( ( ph /\ n e. Z ) -> ( ( H ` n ) ` x ) e. _V ) | 
						
							| 120 |  | fvexd |  |-  ( ph -> ( ZZ>= ` N ) e. _V ) | 
						
							| 121 | 1 37 | ssdf |  |-  ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` N ) ) | 
						
							| 122 |  | fvexd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) e. _V ) | 
						
							| 123 |  | eqidd |  |-  ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) = ( ( H ` n ) ` x ) ) | 
						
							| 124 | 1 12 13 118 18 119 120 121 122 123 | climeldmeqmpt |  |-  ( ph -> ( ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> <-> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) ) | 
						
							| 125 | 10 124 | mpbid |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) | 
						
							| 126 | 79 125 | eqeltrrd |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. dom ~~> ) | 
						
							| 127 | 1 80 12 13 77 84 116 126 | climinf2mpt |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ~~> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 128 | 79 127 | eqbrtrd |  |-  ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) ~~> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) | 
						
							| 129 | 1 12 13 78 128 | climreclmpt |  |-  ( ph -> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) e. RR ) | 
						
							| 130 | 35 129 | eqeltrd |  |-  ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |