| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem4.1 |
|- F/ n ph |
| 2 |
|
smflimsuplem4.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
smflimsuplem4.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
smflimsuplem4.s |
|- ( ph -> S e. SAlg ) |
| 5 |
|
smflimsuplem4.f |
|- ( ph -> F : Z --> ( SMblFn ` S ) ) |
| 6 |
|
smflimsuplem4.e |
|- E = ( n e. Z |-> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 7 |
|
smflimsuplem4.h |
|- H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 8 |
|
smflimsuplem4.n |
|- ( ph -> N e. Z ) |
| 9 |
|
smflimsuplem4.i |
|- ( ph -> x e. |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) ) |
| 10 |
|
smflimsuplem4.c |
|- ( ph -> ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) |
| 11 |
|
nfv |
|- F/ m ph |
| 12 |
3 8
|
eluzelz2d |
|- ( ph -> N e. ZZ ) |
| 13 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 14 |
|
fvexd |
|- ( ( ph /\ m e. Z ) -> ( ( F ` m ) ` x ) e. _V ) |
| 15 |
|
fvexd |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. _V ) |
| 16 |
11 2 12 3 13 14 15
|
limsupequzmpt |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` x ) ) ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> S e. SAlg ) |
| 18 |
3 8
|
uzssd2 |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
| 19 |
18
|
sselda |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. Z ) |
| 20 |
5
|
ffvelcdmda |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 21 |
19 20
|
syldan |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) e. ( SMblFn ` S ) ) |
| 22 |
|
eqid |
|- dom ( F ` m ) = dom ( F ` m ) |
| 23 |
17 21 22
|
smff |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 24 |
3 6 7 19
|
smflimsuplem1 |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> dom ( H ` m ) C_ dom ( F ` m ) ) |
| 25 |
9
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) ) |
| 26 |
|
simpr |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> m e. ( ZZ>= ` N ) ) |
| 27 |
|
fveq2 |
|- ( n = m -> ( H ` n ) = ( H ` m ) ) |
| 28 |
27
|
dmeqd |
|- ( n = m -> dom ( H ` n ) = dom ( H ` m ) ) |
| 29 |
28
|
eleq2d |
|- ( n = m -> ( x e. dom ( H ` n ) <-> x e. dom ( H ` m ) ) ) |
| 30 |
25 26 29
|
eliind |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. dom ( H ` m ) ) |
| 31 |
24 30
|
sseldd |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> x e. dom ( F ` m ) ) |
| 32 |
23 31
|
ffvelcdmd |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. RR ) |
| 33 |
32
|
rexrd |
|- ( ( ph /\ m e. ( ZZ>= ` N ) ) -> ( ( F ` m ) ` x ) e. RR* ) |
| 34 |
11 12 13 33
|
limsupvaluzmpt |
|- ( ph -> ( limsup ` ( m e. ( ZZ>= ` N ) |-> ( ( F ` m ) ` x ) ) ) = inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) |
| 35 |
16 34
|
eqtrd |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) |
| 36 |
18
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ZZ>= ` N ) C_ Z ) |
| 37 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
| 38 |
36 37
|
sseldd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. Z ) |
| 39 |
7
|
a1i |
|- ( ph -> H = ( n e. Z |-> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) ) |
| 40 |
|
fvex |
|- ( E ` n ) e. _V |
| 41 |
40
|
mptex |
|- ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V |
| 42 |
41
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. _V ) |
| 43 |
39 42
|
fvmpt2d |
|- ( ( ph /\ n e. Z ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 44 |
38 43
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( H ` n ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 45 |
44
|
dmeqd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( H ` n ) = dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 46 |
|
xrltso |
|- < Or RR* |
| 47 |
46
|
supex |
|- sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. _V |
| 48 |
|
eqid |
|- ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 49 |
47 48
|
dmmpti |
|- dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) |
| 50 |
49
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( x e. ( E ` n ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) = ( E ` n ) ) |
| 51 |
45 50
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> dom ( H ` n ) = ( E ` n ) ) |
| 52 |
1 51
|
iineq2d |
|- ( ph -> |^|_ n e. ( ZZ>= ` N ) dom ( H ` n ) = |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) |
| 53 |
9 52
|
eleqtrd |
|- ( ph -> x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) ) |
| 55 |
|
eliinid |
|- ( ( x e. |^|_ n e. ( ZZ>= ` N ) ( E ` n ) /\ n e. ( ZZ>= ` N ) ) -> x e. ( E ` n ) ) |
| 56 |
54 37 55
|
syl2anc |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. ( E ` n ) ) |
| 57 |
47
|
a1i |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ x e. ( E ` n ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. _V ) |
| 58 |
44 57
|
fvmpt2d |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ x e. ( E ` n ) ) -> ( ( H ` n ) ` x ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 59 |
56 58
|
mpdan |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) = sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 60 |
|
eqid |
|- { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } |
| 61 |
3
|
eluzelz2 |
|- ( n e. Z -> n e. ZZ ) |
| 62 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
| 63 |
61 62
|
uzn0d |
|- ( n e. Z -> ( ZZ>= ` n ) =/= (/) ) |
| 64 |
|
fvex |
|- ( F ` m ) e. _V |
| 65 |
64
|
dmex |
|- dom ( F ` m ) e. _V |
| 66 |
65
|
rgenw |
|- A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V |
| 67 |
66
|
a1i |
|- ( n e. Z -> A. m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 68 |
63 67
|
iinexd |
|- ( n e. Z -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 69 |
68
|
adantl |
|- ( ( ph /\ n e. Z ) -> |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) e. _V ) |
| 70 |
60 69
|
rabexd |
|- ( ( ph /\ n e. Z ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) |
| 71 |
38 70
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) |
| 72 |
6
|
fvmpt2 |
|- ( ( n e. Z /\ { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } e. _V ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 73 |
38 71 72
|
syl2anc |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( E ` n ) = { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 74 |
56 73
|
eleqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } ) |
| 75 |
|
rabid |
|- ( x e. { x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR } <-> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) ) |
| 76 |
74 75
|
sylib |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( x e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) ) |
| 77 |
76
|
simprd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) e. RR ) |
| 78 |
59 77
|
eqeltrd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) e. RR ) |
| 79 |
1 59
|
mpteq2da |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) = ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ) |
| 80 |
|
nfv |
|- F/ k ph |
| 81 |
|
fveq2 |
|- ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) |
| 82 |
81
|
mpteq1d |
|- ( n = k -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) ) |
| 83 |
82
|
rneqd |
|- ( n = k -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) ) |
| 84 |
83
|
supeq1d |
|- ( n = k -> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) = sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 85 |
|
nfv |
|- F/ m ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) |
| 86 |
|
eluzelz |
|- ( n e. ( ZZ>= ` N ) -> n e. ZZ ) |
| 87 |
86
|
adantr |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n e. ZZ ) |
| 88 |
|
simpr |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k = ( n + 1 ) ) |
| 89 |
87
|
peano2zd |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( n + 1 ) e. ZZ ) |
| 90 |
88 89
|
eqeltrd |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. ZZ ) |
| 91 |
87
|
zred |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n e. RR ) |
| 92 |
90
|
zred |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. RR ) |
| 93 |
91
|
ltp1d |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n < ( n + 1 ) ) |
| 94 |
88
|
eqcomd |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( n + 1 ) = k ) |
| 95 |
93 94
|
breqtrd |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n < k ) |
| 96 |
91 92 95
|
ltled |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> n <_ k ) |
| 97 |
62 87 90 96
|
eluzd |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> k e. ( ZZ>= ` n ) ) |
| 98 |
|
uzss |
|- ( k e. ( ZZ>= ` n ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` n ) ) |
| 99 |
97 98
|
syl |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ( ZZ>= ` k ) C_ ( ZZ>= ` n ) ) |
| 100 |
|
fvexd |
|- ( ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) /\ m e. ( ZZ>= ` k ) ) -> ( ( F ` m ) ` x ) e. _V ) |
| 101 |
85 99 100
|
rnmptss2 |
|- ( ( n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) |
| 102 |
101
|
3adant1 |
|- ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) ) |
| 103 |
|
nfv |
|- F/ m ( ph /\ n e. ( ZZ>= ` N ) ) |
| 104 |
|
eqid |
|- ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) |
| 105 |
|
simpll |
|- ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
| 106 |
38 105
|
syldanl |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ph ) |
| 107 |
13
|
uztrn2 |
|- ( ( n e. ( ZZ>= ` N ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) |
| 108 |
107
|
adantll |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. ( ZZ>= ` N ) ) |
| 109 |
106 108 32
|
syl2anc |
|- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` x ) e. RR ) |
| 110 |
103 104 109
|
rnmptssd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR ) |
| 111 |
|
ressxr |
|- RR C_ RR* |
| 112 |
111
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> RR C_ RR* ) |
| 113 |
110 112
|
sstrd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) |
| 114 |
113
|
3adant3 |
|- ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) |
| 115 |
|
supxrss |
|- ( ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) C_ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) /\ ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) C_ RR* ) -> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) <_ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 116 |
102 114 115
|
syl2anc |
|- ( ( ph /\ n e. ( ZZ>= ` N ) /\ k = ( n + 1 ) ) -> sup ( ran ( m e. ( ZZ>= ` k ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) <_ sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) |
| 117 |
3
|
fvexi |
|- Z e. _V |
| 118 |
117
|
a1i |
|- ( ph -> Z e. _V ) |
| 119 |
|
fvexd |
|- ( ( ph /\ n e. Z ) -> ( ( H ` n ) ` x ) e. _V ) |
| 120 |
|
fvexd |
|- ( ph -> ( ZZ>= ` N ) e. _V ) |
| 121 |
1 37
|
ssdf |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` N ) ) |
| 122 |
|
fvexd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) e. _V ) |
| 123 |
|
eqidd |
|- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( H ` n ) ` x ) = ( ( H ` n ) ` x ) ) |
| 124 |
1 12 13 118 18 119 120 121 122 123
|
climeldmeqmpt |
|- ( ph -> ( ( n e. Z |-> ( ( H ` n ) ` x ) ) e. dom ~~> <-> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) ) |
| 125 |
10 124
|
mpbid |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) e. dom ~~> ) |
| 126 |
79 125
|
eqeltrrd |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) e. dom ~~> ) |
| 127 |
1 80 12 13 77 84 116 126
|
climinf2mpt |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) ~~> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) |
| 128 |
79 127
|
eqbrtrd |
|- ( ph -> ( n e. ( ZZ>= ` N ) |-> ( ( H ` n ) ` x ) ) ~~> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) ) |
| 129 |
1 12 13 78 128
|
climreclmpt |
|- ( ph -> inf ( ran ( n e. ( ZZ>= ` N ) |-> sup ( ran ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` x ) ) , RR* , < ) ) , RR* , < ) e. RR ) |
| 130 |
35 129
|
eqeltrd |
|- ( ph -> ( limsup ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) e. RR ) |