Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
smflimsuplem1.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
3 |
|
smflimsuplem1.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
4 |
|
smflimsuplem1.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
7 |
6
|
cbvmptv |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
8 |
7
|
rneqi |
⊢ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
9 |
8
|
supeq1i |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) |
10 |
9
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
11 |
10
|
a1i |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝐾 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑛 = 𝐾 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝐾 ) ) |
14 |
13
|
mpteq1d |
⊢ ( 𝑛 = 𝐾 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
15 |
14
|
rneqd |
⊢ ( 𝑛 = 𝐾 → ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
16 |
15
|
supeq1d |
⊢ ( 𝑛 = 𝐾 → sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
17 |
12 16
|
mpteq12dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
18 |
11 17
|
eqtrd |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
19 |
|
fvex |
⊢ ( 𝐸 ‘ 𝐾 ) ∈ V |
20 |
19
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V ) |
22 |
3 18 4 21
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) = dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
24 |
|
xrltso |
⊢ < Or ℝ* |
25 |
24
|
supex |
⊢ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V |
26 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
27 |
25 26
|
dmmpti |
⊢ dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝐾 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝐾 ) ) |
29 |
5
|
dmeqd |
⊢ ( 𝑚 = 𝑗 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑗 ) ) |
30 |
29
|
cbviinv |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) |
31 |
30
|
eleq2i |
⊢ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ) |
32 |
9
|
eleq1i |
⊢ ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
33 |
31 32
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
34 |
33
|
rabbia2 |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
35 |
34
|
a1i |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
36 |
13
|
iineq1d |
⊢ ( 𝑛 = 𝐾 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) |
37 |
36
|
eleq2d |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ↔ 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) ) |
38 |
16
|
eleq1d |
⊢ ( 𝑛 = 𝐾 → ( sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
39 |
37 38
|
anbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) ) |
40 |
39
|
rabbidva2 |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
41 |
35 40
|
eqtrd |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
42 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
43 |
1 4
|
eluzelz2d |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
44 |
|
uzid |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
45 |
|
ne0i |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ℤ≥ ‘ 𝐾 ) ≠ ∅ ) |
46 |
43 44 45
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ≠ ∅ ) |
47 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑗 ) ∈ V |
48 |
47
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑗 ) ∈ V |
49 |
48
|
rgenw |
⊢ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V |
50 |
49
|
a1i |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V ) |
51 |
46 50
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V ) |
52 |
42 51
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
53 |
2 41 4 52
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
54 |
23 28 53
|
3eqtrd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
55 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) |
56 |
55
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) |
57 |
43 44
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝐾 ) ) |
59 |
58
|
dmeqd |
⊢ ( 𝑗 = 𝐾 → dom ( 𝐹 ‘ 𝑗 ) = dom ( 𝐹 ‘ 𝐾 ) ) |
60 |
|
ssid |
⊢ dom ( 𝐹 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) |
61 |
60
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
62 |
57 59 61
|
iinssd |
⊢ ( 𝜑 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
63 |
56 62
|
sstrd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
64 |
54 63
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |