Metamath Proof Explorer


Theorem smflimsuplem1

Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem1.z 𝑍 = ( ℤ𝑀 )
smflimsuplem1.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
smflimsuplem1.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
smflimsuplem1.k ( 𝜑𝐾𝑍 )
Assertion smflimsuplem1 ( 𝜑 → dom ( 𝐻𝐾 ) ⊆ dom ( 𝐹𝐾 ) )

Proof

Step Hyp Ref Expression
1 smflimsuplem1.z 𝑍 = ( ℤ𝑀 )
2 smflimsuplem1.e 𝐸 = ( 𝑛𝑍 ↦ { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
3 smflimsuplem1.h 𝐻 = ( 𝑛𝑍 ↦ ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
4 smflimsuplem1.k ( 𝜑𝐾𝑍 )
5 fveq2 ( 𝑚 = 𝑗 → ( 𝐹𝑚 ) = ( 𝐹𝑗 ) )
6 5 fveq1d ( 𝑚 = 𝑗 → ( ( 𝐹𝑚 ) ‘ 𝑥 ) = ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
7 6 cbvmptv ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
8 7 rneqi ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) )
9 8 supeq1i sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < )
10 9 mpteq2i ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) )
11 10 a1i ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
12 fveq2 ( 𝑛 = 𝐾 → ( 𝐸𝑛 ) = ( 𝐸𝐾 ) )
13 fveq2 ( 𝑛 = 𝐾 → ( ℤ𝑛 ) = ( ℤ𝐾 ) )
14 13 mpteq1d ( 𝑛 = 𝐾 → ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
15 14 rneqd ( 𝑛 = 𝐾 → ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) )
16 15 supeq1d ( 𝑛 = 𝐾 → sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) )
17 12 16 mpteq12dv ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
18 11 17 eqtrd ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
19 fvex ( 𝐸𝐾 ) ∈ V
20 19 mptex ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V
21 20 a1i ( 𝜑 → ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V )
22 3 18 4 21 fvmptd3 ( 𝜑 → ( 𝐻𝐾 ) = ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
23 22 dmeqd ( 𝜑 → dom ( 𝐻𝐾 ) = dom ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) )
24 xrltso < Or ℝ*
25 24 supex sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V
26 eqid ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) )
27 25 26 dmmpti dom ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸𝐾 )
28 27 a1i ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸𝐾 ) )
29 5 dmeqd ( 𝑚 = 𝑗 → dom ( 𝐹𝑚 ) = dom ( 𝐹𝑗 ) )
30 29 cbviinv 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) = 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 )
31 30 eleq2i ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ↔ 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) )
32 9 eleq1i ( sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ )
33 31 32 anbi12i ( ( 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) )
34 33 rabbia2 { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
35 34 a1i ( 𝑛 = 𝐾 → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
36 13 iineq1d ( 𝑛 = 𝐾 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) = 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) )
37 36 eleq2d ( 𝑛 = 𝐾 → ( 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ↔ 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ) )
38 16 eleq1d ( 𝑛 = 𝐾 → ( sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) )
39 37 38 anbi12d ( 𝑛 = 𝐾 → ( ( 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) )
40 39 rabbidva2 ( 𝑛 = 𝐾 → { 𝑥 𝑗 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
41 35 40 eqtrd ( 𝑛 = 𝐾 → { 𝑥 𝑚 ∈ ( ℤ𝑛 ) dom ( 𝐹𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( ( 𝐹𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
42 eqid { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ }
43 1 4 eluzelz2d ( 𝜑𝐾 ∈ ℤ )
44 uzid ( 𝐾 ∈ ℤ → 𝐾 ∈ ( ℤ𝐾 ) )
45 ne0i ( 𝐾 ∈ ( ℤ𝐾 ) → ( ℤ𝐾 ) ≠ ∅ )
46 43 44 45 3syl ( 𝜑 → ( ℤ𝐾 ) ≠ ∅ )
47 fvex ( 𝐹𝑗 ) ∈ V
48 47 dmex dom ( 𝐹𝑗 ) ∈ V
49 48 rgenw 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∈ V
50 49 a1i ( 𝜑 → ∀ 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∈ V )
51 46 50 iinexd ( 𝜑 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∈ V )
52 42 51 rabexd ( 𝜑 → { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V )
53 2 41 4 52 fvmptd3 ( 𝜑 → ( 𝐸𝐾 ) = { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
54 23 28 53 3eqtrd ( 𝜑 → dom ( 𝐻𝐾 ) = { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } )
55 ssrab2 { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 )
56 55 a1i ( 𝜑 → { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) )
57 43 44 syl ( 𝜑𝐾 ∈ ( ℤ𝐾 ) )
58 fveq2 ( 𝑗 = 𝐾 → ( 𝐹𝑗 ) = ( 𝐹𝐾 ) )
59 58 dmeqd ( 𝑗 = 𝐾 → dom ( 𝐹𝑗 ) = dom ( 𝐹𝐾 ) )
60 ssid dom ( 𝐹𝐾 ) ⊆ dom ( 𝐹𝐾 )
61 60 a1i ( 𝜑 → dom ( 𝐹𝐾 ) ⊆ dom ( 𝐹𝐾 ) )
62 57 59 61 iinssd ( 𝜑 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ⊆ dom ( 𝐹𝐾 ) )
63 56 62 sstrd ( 𝜑 → { 𝑥 𝑗 ∈ ( ℤ𝐾 ) dom ( 𝐹𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ𝐾 ) ↦ ( ( 𝐹𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ dom ( 𝐹𝐾 ) )
64 54 63 eqsstrd ( 𝜑 → dom ( 𝐻𝐾 ) ⊆ dom ( 𝐹𝐾 ) )