| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimsuplem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
smflimsuplem1.e |
⊢ 𝐸 = ( 𝑛 ∈ 𝑍 ↦ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 3 |
|
smflimsuplem1.h |
⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 4 |
|
smflimsuplem1.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 7 |
6
|
cbvmptv |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 8 |
7
|
rneqi |
⊢ ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 9 |
8
|
supeq1i |
⊢ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) |
| 10 |
9
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝐾 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑛 = 𝐾 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝐾 ) ) |
| 14 |
13
|
mpteq1d |
⊢ ( 𝑛 = 𝐾 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 15 |
14
|
rneqd |
⊢ ( 𝑛 = 𝐾 → ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 16 |
15
|
supeq1d |
⊢ ( 𝑛 = 𝐾 → sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) = sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 17 |
12 16
|
mpteq12dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 18 |
11 17
|
eqtrd |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ↦ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 19 |
|
fvex |
⊢ ( 𝐸 ‘ 𝐾 ) ∈ V |
| 20 |
19
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ∈ V ) |
| 22 |
3 18 4 21
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐾 ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 23 |
22
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) = dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) ) |
| 24 |
|
xrltso |
⊢ < Or ℝ* |
| 25 |
24
|
supex |
⊢ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ V |
| 26 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) |
| 27 |
25 26
|
dmmpti |
⊢ dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝐾 ) |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → dom ( 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ↦ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ) = ( 𝐸 ‘ 𝐾 ) ) |
| 29 |
5
|
dmeqd |
⊢ ( 𝑚 = 𝑗 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑗 ) ) |
| 30 |
29
|
cbviinv |
⊢ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) |
| 31 |
30
|
eleq2i |
⊢ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ) |
| 32 |
9
|
eleq1i |
⊢ ( sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) |
| 33 |
31 32
|
anbi12i |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∧ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 34 |
33
|
rabbia2 |
⊢ { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 35 |
34
|
a1i |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 36 |
13
|
iineq1d |
⊢ ( 𝑛 = 𝐾 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) = ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) |
| 37 |
36
|
eleq2d |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ↔ 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) ) |
| 38 |
16
|
eleq1d |
⊢ ( 𝑛 = 𝐾 → ( sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ↔ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) |
| 39 |
37 38
|
anbi12d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ↔ ( 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∧ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ ) ) ) |
| 40 |
39
|
rabbidva2 |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 41 |
35 40
|
eqtrd |
⊢ ( 𝑛 = 𝐾 → { 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ sup ( ran ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 42 |
|
eqid |
⊢ { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } |
| 43 |
1 4
|
eluzelz2d |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 44 |
|
uzid |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 45 |
|
ne0i |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ℤ≥ ‘ 𝐾 ) ≠ ∅ ) |
| 46 |
43 44 45
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ≠ ∅ ) |
| 47 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑗 ) ∈ V |
| 48 |
47
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑗 ) ∈ V |
| 49 |
48
|
rgenw |
⊢ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V ) |
| 51 |
46 50
|
iinexd |
⊢ ( 𝜑 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∈ V ) |
| 52 |
42 51
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ∈ V ) |
| 53 |
2 41 4 52
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 54 |
23 28 53
|
3eqtrd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) = { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ) |
| 55 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ) |
| 57 |
43 44
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝐾 ) ) |
| 59 |
58
|
dmeqd |
⊢ ( 𝑗 = 𝐾 → dom ( 𝐹 ‘ 𝑗 ) = dom ( 𝐹 ‘ 𝐾 ) ) |
| 60 |
|
ssid |
⊢ dom ( 𝐹 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
| 62 |
57 59 61
|
iinssd |
⊢ ( 𝜑 → ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
| 63 |
56 62
|
sstrd |
⊢ ( 𝜑 → { 𝑥 ∈ ∩ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) dom ( 𝐹 ‘ 𝑗 ) ∣ sup ( ran ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) , ℝ* , < ) ∈ ℝ } ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |
| 64 |
54 63
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝐻 ‘ 𝐾 ) ⊆ dom ( 𝐹 ‘ 𝐾 ) ) |