| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-msqgt0d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
sn-msqgt0d.u |
|- ( ph -> A =/= 0 ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ A < 0 ) -> A e. RR ) |
| 4 |
|
simpr |
|- ( ( ph /\ A < 0 ) -> A < 0 ) |
| 5 |
3 3 4 4
|
sn-mullt0d |
|- ( ( ph /\ A < 0 ) -> 0 < ( A x. A ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
| 7 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
| 8 |
6 6 7 7
|
mulgt0d |
|- ( ( ph /\ 0 < A ) -> 0 < ( A x. A ) ) |
| 9 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 10 |
1 9
|
lttri2d |
|- ( ph -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 11 |
2 10
|
mpbid |
|- ( ph -> ( A < 0 \/ 0 < A ) ) |
| 12 |
5 8 11
|
mpjaodan |
|- ( ph -> 0 < ( A x. A ) ) |