Metamath Proof Explorer


Theorem sn-mullt0d

Description: The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025)

Ref Expression
Hypotheses sn-mullt0d.a
|- ( ph -> A e. RR )
sn-mullt0d.b
|- ( ph -> B e. RR )
sn-mullt0d.1
|- ( ph -> A < 0 )
sn-mullt0d.2
|- ( ph -> B < 0 )
Assertion sn-mullt0d
|- ( ph -> 0 < ( A x. B ) )

Proof

Step Hyp Ref Expression
1 sn-mullt0d.a
 |-  ( ph -> A e. RR )
2 sn-mullt0d.b
 |-  ( ph -> B e. RR )
3 sn-mullt0d.1
 |-  ( ph -> A < 0 )
4 sn-mullt0d.2
 |-  ( ph -> B < 0 )
5 3 lt0ne0d
 |-  ( ph -> A =/= 0 )
6 4 lt0ne0d
 |-  ( ph -> B =/= 0 )
7 5 6 jca
 |-  ( ph -> ( A =/= 0 /\ B =/= 0 ) )
8 neanior
 |-  ( ( A =/= 0 /\ B =/= 0 ) <-> -. ( A = 0 \/ B = 0 ) )
9 7 8 sylib
 |-  ( ph -> -. ( A = 0 \/ B = 0 ) )
10 1 2 sn-remul0ord
 |-  ( ph -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) )
11 9 10 mtbird
 |-  ( ph -> -. ( A x. B ) = 0 )
12 11 neqcomd
 |-  ( ph -> -. 0 = ( A x. B ) )
13 0red
 |-  ( ph -> 0 e. RR )
14 2 13 4 ltnsymd
 |-  ( ph -> -. 0 < B )
15 1 2 3 mullt0b1d
 |-  ( ph -> ( 0 < B <-> ( A x. B ) < 0 ) )
16 14 15 mtbid
 |-  ( ph -> -. ( A x. B ) < 0 )
17 ioran
 |-  ( -. ( 0 = ( A x. B ) \/ ( A x. B ) < 0 ) <-> ( -. 0 = ( A x. B ) /\ -. ( A x. B ) < 0 ) )
18 12 16 17 sylanbrc
 |-  ( ph -> -. ( 0 = ( A x. B ) \/ ( A x. B ) < 0 ) )
19 1 2 remulcld
 |-  ( ph -> ( A x. B ) e. RR )
20 13 19 lttrid
 |-  ( ph -> ( 0 < ( A x. B ) <-> -. ( 0 = ( A x. B ) \/ ( A x. B ) < 0 ) ) )
21 18 20 mpbird
 |-  ( ph -> 0 < ( A x. B ) )