Metamath Proof Explorer


Theorem sn-mullt0d

Description: The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025)

Ref Expression
Hypotheses sn-mullt0d.a ( 𝜑𝐴 ∈ ℝ )
sn-mullt0d.b ( 𝜑𝐵 ∈ ℝ )
sn-mullt0d.1 ( 𝜑𝐴 < 0 )
sn-mullt0d.2 ( 𝜑𝐵 < 0 )
Assertion sn-mullt0d ( 𝜑 → 0 < ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sn-mullt0d.a ( 𝜑𝐴 ∈ ℝ )
2 sn-mullt0d.b ( 𝜑𝐵 ∈ ℝ )
3 sn-mullt0d.1 ( 𝜑𝐴 < 0 )
4 sn-mullt0d.2 ( 𝜑𝐵 < 0 )
5 3 lt0ne0d ( 𝜑𝐴 ≠ 0 )
6 4 lt0ne0d ( 𝜑𝐵 ≠ 0 )
7 5 6 jca ( 𝜑 → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) )
8 neanior ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) )
9 7 8 sylib ( 𝜑 → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) )
10 1 2 sn-remul0ord ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) )
11 9 10 mtbird ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) = 0 )
12 11 neqcomd ( 𝜑 → ¬ 0 = ( 𝐴 · 𝐵 ) )
13 0red ( 𝜑 → 0 ∈ ℝ )
14 2 13 4 ltnsymd ( 𝜑 → ¬ 0 < 𝐵 )
15 1 2 3 mullt0b1d ( 𝜑 → ( 0 < 𝐵 ↔ ( 𝐴 · 𝐵 ) < 0 ) )
16 14 15 mtbid ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) < 0 )
17 ioran ( ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) ↔ ( ¬ 0 = ( 𝐴 · 𝐵 ) ∧ ¬ ( 𝐴 · 𝐵 ) < 0 ) )
18 12 16 17 sylanbrc ( 𝜑 → ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) )
19 1 2 remulcld ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ )
20 13 19 lttrid ( 𝜑 → ( 0 < ( 𝐴 · 𝐵 ) ↔ ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) ) )
21 18 20 mpbird ( 𝜑 → 0 < ( 𝐴 · 𝐵 ) )