| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-mullt0d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
sn-mullt0d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
sn-mullt0d.1 |
⊢ ( 𝜑 → 𝐴 < 0 ) |
| 4 |
|
sn-mullt0d.2 |
⊢ ( 𝜑 → 𝐵 < 0 ) |
| 5 |
3
|
lt0ne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 6 |
4
|
lt0ne0d |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 7 |
5 6
|
jca |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
| 8 |
|
neanior |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 10 |
1 2
|
sn-remul0ord |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 11 |
9 10
|
mtbird |
⊢ ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) = 0 ) |
| 12 |
11
|
neqcomd |
⊢ ( 𝜑 → ¬ 0 = ( 𝐴 · 𝐵 ) ) |
| 13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 14 |
2 13 4
|
ltnsymd |
⊢ ( 𝜑 → ¬ 0 < 𝐵 ) |
| 15 |
1 2 3
|
mullt0b1d |
⊢ ( 𝜑 → ( 0 < 𝐵 ↔ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 16 |
14 15
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝐴 · 𝐵 ) < 0 ) |
| 17 |
|
ioran |
⊢ ( ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) ↔ ( ¬ 0 = ( 𝐴 · 𝐵 ) ∧ ¬ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 18 |
12 16 17
|
sylanbrc |
⊢ ( 𝜑 → ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 19 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 20 |
13 19
|
lttrid |
⊢ ( 𝜑 → ( 0 < ( 𝐴 · 𝐵 ) ↔ ¬ ( 0 = ( 𝐴 · 𝐵 ) ∨ ( 𝐴 · 𝐵 ) < 0 ) ) ) |
| 21 |
18 20
|
mpbird |
⊢ ( 𝜑 → 0 < ( 𝐴 · 𝐵 ) ) |