| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullt0b1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
mullt0b1d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mullt0b1d.1 |
⊢ ( 𝜑 → 𝐴 < 0 ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 < 𝐵 ) |
| 8 |
4 5 6 7
|
mulltgt0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 9 |
3
|
lt0ne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 10 |
1 9
|
sn-rereccld |
⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) ∈ ℝ ) |
| 11 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 12 |
10 11
|
remulneg2d |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) = ( 0 −ℝ ( ( 1 /ℝ 𝐴 ) · ( 𝐴 · 𝐵 ) ) ) ) |
| 13 |
1 9
|
rerecid2 |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · 𝐴 ) = 1 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 /ℝ 𝐴 ) · 𝐴 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
| 15 |
10
|
recnd |
⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) ∈ ℂ ) |
| 16 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 17 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 18 |
15 16 17
|
mulassd |
⊢ ( 𝜑 → ( ( ( 1 /ℝ 𝐴 ) · 𝐴 ) · 𝐵 ) = ( ( 1 /ℝ 𝐴 ) · ( 𝐴 · 𝐵 ) ) ) |
| 19 |
|
remullid |
⊢ ( 𝐵 ∈ ℝ → ( 1 · 𝐵 ) = 𝐵 ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 ) |
| 21 |
14 18 20
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 𝐴 · 𝐵 ) ) = 𝐵 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 0 −ℝ ( ( 1 /ℝ 𝐴 ) · ( 𝐴 · 𝐵 ) ) ) = ( 0 −ℝ 𝐵 ) ) |
| 23 |
12 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) = ( 0 −ℝ 𝐵 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) = ( 0 −ℝ 𝐵 ) ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( 1 /ℝ 𝐴 ) ∈ ℝ ) |
| 26 |
|
rernegcl |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ → ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 27 |
11 26
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ∈ ℝ ) |
| 29 |
1 3
|
sn-reclt0d |
⊢ ( 𝜑 → ( 1 /ℝ 𝐴 ) < 0 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( 1 /ℝ 𝐴 ) < 0 ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) |
| 32 |
25 28 30 31
|
mulltgt0d |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( ( 1 /ℝ 𝐴 ) · ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) < 0 ) |
| 33 |
24 32
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) → ( 0 −ℝ 𝐵 ) < 0 ) |
| 34 |
33
|
ex |
⊢ ( 𝜑 → ( 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) → ( 0 −ℝ 𝐵 ) < 0 ) ) |
| 35 |
|
relt0neg1 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) ) |
| 36 |
11 35
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < ( 0 −ℝ ( 𝐴 · 𝐵 ) ) ) ) |
| 37 |
|
relt0neg2 |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ ( 0 −ℝ 𝐵 ) < 0 ) ) |
| 38 |
2 37
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐵 ↔ ( 0 −ℝ 𝐵 ) < 0 ) ) |
| 39 |
34 36 38
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → 0 < 𝐵 ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 0 < 𝐵 ) |
| 41 |
8 40
|
impbida |
⊢ ( 𝜑 → ( 0 < 𝐵 ↔ ( 𝐴 · 𝐵 ) < 0 ) ) |