| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullt0b2d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
mullt0b2d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mullt0b2d.1 |
⊢ ( 𝜑 → 𝐵 < 0 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 5 |
4
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 < 0 ) |
| 7 |
6
|
lt0ne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ≠ 0 ) |
| 8 |
5 7
|
jca |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) |
| 9 |
|
neanior |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 |
11 12
|
sn-remul0ord |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 14 |
10 13
|
mtbird |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ ( 𝐴 · 𝐵 ) = 0 ) |
| 15 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 16 |
2 15 3
|
ltnsymd |
⊢ ( 𝜑 → ¬ 0 < 𝐵 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ 0 < 𝐵 ) |
| 18 |
11 12 4
|
mulgt0b1d |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 0 < 𝐵 ↔ 0 < ( 𝐴 · 𝐵 ) ) ) |
| 19 |
17 18
|
mtbid |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ 0 < ( 𝐴 · 𝐵 ) ) |
| 20 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 · 𝐵 ) = 0 ∨ 0 < ( 𝐴 · 𝐵 ) ) ↔ ( ¬ ( 𝐴 · 𝐵 ) = 0 ∧ ¬ 0 < ( 𝐴 · 𝐵 ) ) ) |
| 21 |
14 19 20
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ¬ ( ( 𝐴 · 𝐵 ) = 0 ∨ 0 < ( 𝐴 · 𝐵 ) ) ) |
| 22 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 23 |
22 15
|
lttrid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ¬ ( ( 𝐴 · 𝐵 ) = 0 ∨ 0 < ( 𝐴 · 𝐵 ) ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( ( 𝐴 · 𝐵 ) < 0 ↔ ¬ ( ( 𝐴 · 𝐵 ) = 0 ∨ 0 < ( 𝐴 · 𝐵 ) ) ) ) |
| 25 |
21 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < 𝐴 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 26 |
|
remul02 |
⊢ ( 𝐵 ∈ ℝ → ( 0 · 𝐵 ) = 0 ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → ( 0 · 𝐵 ) = 0 ) |
| 28 |
15
|
ltnrd |
⊢ ( 𝜑 → ¬ 0 < 0 ) |
| 29 |
27 28
|
eqnbrtrd |
⊢ ( 𝜑 → ¬ ( 0 · 𝐵 ) < 0 ) |
| 30 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 31 |
30
|
breq1d |
⊢ ( 0 = 𝐴 → ( ( 0 · 𝐵 ) < 0 ↔ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 32 |
31
|
notbid |
⊢ ( 0 = 𝐴 → ( ¬ ( 0 · 𝐵 ) < 0 ↔ ¬ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 33 |
29 32
|
syl5ibcom |
⊢ ( 𝜑 → ( 0 = 𝐴 → ¬ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 34 |
33
|
con2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ¬ 0 = 𝐴 ) ) |
| 35 |
34
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ¬ 0 = 𝐴 ) |
| 36 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ¬ 0 < 𝐵 ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 38 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 39 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
| 41 |
38 39 40
|
mullt0b1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( 0 < 𝐵 ↔ ( 𝐴 · 𝐵 ) < 0 ) ) |
| 42 |
37 41
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 0 < 𝐵 ) |
| 43 |
36 42
|
mtand |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ¬ 𝐴 < 0 ) |
| 44 |
|
ioran |
⊢ ( ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ↔ ( ¬ 0 = 𝐴 ∧ ¬ 𝐴 < 0 ) ) |
| 45 |
35 43 44
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) |
| 46 |
15 1
|
lttrid |
⊢ ( 𝜑 → ( 0 < 𝐴 ↔ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 0 < 𝐴 ↔ ¬ ( 0 = 𝐴 ∨ 𝐴 < 0 ) ) ) |
| 48 |
45 47
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 0 < 𝐴 ) |
| 49 |
25 48
|
impbida |
⊢ ( 𝜑 → ( 0 < 𝐴 ↔ ( 𝐴 · 𝐵 ) < 0 ) ) |