| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullt0b2d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
mullt0b2d.b |
|- ( ph -> B e. RR ) |
| 3 |
|
mullt0b2d.1 |
|- ( ph -> B < 0 ) |
| 4 |
|
simpr |
|- ( ( ph /\ 0 < A ) -> 0 < A ) |
| 5 |
4
|
gt0ne0d |
|- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ 0 < A ) -> B < 0 ) |
| 7 |
6
|
lt0ne0d |
|- ( ( ph /\ 0 < A ) -> B =/= 0 ) |
| 8 |
5 7
|
jca |
|- ( ( ph /\ 0 < A ) -> ( A =/= 0 /\ B =/= 0 ) ) |
| 9 |
|
neanior |
|- ( ( A =/= 0 /\ B =/= 0 ) <-> -. ( A = 0 \/ B = 0 ) ) |
| 10 |
8 9
|
sylib |
|- ( ( ph /\ 0 < A ) -> -. ( A = 0 \/ B = 0 ) ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. RR ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ 0 < A ) -> B e. RR ) |
| 13 |
11 12
|
sn-remul0ord |
|- ( ( ph /\ 0 < A ) -> ( ( A x. B ) = 0 <-> ( A = 0 \/ B = 0 ) ) ) |
| 14 |
10 13
|
mtbird |
|- ( ( ph /\ 0 < A ) -> -. ( A x. B ) = 0 ) |
| 15 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 16 |
2 15 3
|
ltnsymd |
|- ( ph -> -. 0 < B ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ 0 < A ) -> -. 0 < B ) |
| 18 |
11 12 4
|
mulgt0b1d |
|- ( ( ph /\ 0 < A ) -> ( 0 < B <-> 0 < ( A x. B ) ) ) |
| 19 |
17 18
|
mtbid |
|- ( ( ph /\ 0 < A ) -> -. 0 < ( A x. B ) ) |
| 20 |
|
ioran |
|- ( -. ( ( A x. B ) = 0 \/ 0 < ( A x. B ) ) <-> ( -. ( A x. B ) = 0 /\ -. 0 < ( A x. B ) ) ) |
| 21 |
14 19 20
|
sylanbrc |
|- ( ( ph /\ 0 < A ) -> -. ( ( A x. B ) = 0 \/ 0 < ( A x. B ) ) ) |
| 22 |
1 2
|
remulcld |
|- ( ph -> ( A x. B ) e. RR ) |
| 23 |
22 15
|
lttrid |
|- ( ph -> ( ( A x. B ) < 0 <-> -. ( ( A x. B ) = 0 \/ 0 < ( A x. B ) ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( A x. B ) < 0 <-> -. ( ( A x. B ) = 0 \/ 0 < ( A x. B ) ) ) ) |
| 25 |
21 24
|
mpbird |
|- ( ( ph /\ 0 < A ) -> ( A x. B ) < 0 ) |
| 26 |
|
remul02 |
|- ( B e. RR -> ( 0 x. B ) = 0 ) |
| 27 |
2 26
|
syl |
|- ( ph -> ( 0 x. B ) = 0 ) |
| 28 |
15
|
ltnrd |
|- ( ph -> -. 0 < 0 ) |
| 29 |
27 28
|
eqnbrtrd |
|- ( ph -> -. ( 0 x. B ) < 0 ) |
| 30 |
|
oveq1 |
|- ( 0 = A -> ( 0 x. B ) = ( A x. B ) ) |
| 31 |
30
|
breq1d |
|- ( 0 = A -> ( ( 0 x. B ) < 0 <-> ( A x. B ) < 0 ) ) |
| 32 |
31
|
notbid |
|- ( 0 = A -> ( -. ( 0 x. B ) < 0 <-> -. ( A x. B ) < 0 ) ) |
| 33 |
29 32
|
syl5ibcom |
|- ( ph -> ( 0 = A -> -. ( A x. B ) < 0 ) ) |
| 34 |
33
|
con2d |
|- ( ph -> ( ( A x. B ) < 0 -> -. 0 = A ) ) |
| 35 |
34
|
imp |
|- ( ( ph /\ ( A x. B ) < 0 ) -> -. 0 = A ) |
| 36 |
16
|
adantr |
|- ( ( ph /\ ( A x. B ) < 0 ) -> -. 0 < B ) |
| 37 |
|
simplr |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A x. B ) < 0 ) |
| 38 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A e. RR ) |
| 39 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> B e. RR ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < 0 ) |
| 41 |
38 39 40
|
mullt0b1d |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( 0 < B <-> ( A x. B ) < 0 ) ) |
| 42 |
37 41
|
mpbird |
|- ( ( ( ph /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 < B ) |
| 43 |
36 42
|
mtand |
|- ( ( ph /\ ( A x. B ) < 0 ) -> -. A < 0 ) |
| 44 |
|
ioran |
|- ( -. ( 0 = A \/ A < 0 ) <-> ( -. 0 = A /\ -. A < 0 ) ) |
| 45 |
35 43 44
|
sylanbrc |
|- ( ( ph /\ ( A x. B ) < 0 ) -> -. ( 0 = A \/ A < 0 ) ) |
| 46 |
15 1
|
lttrid |
|- ( ph -> ( 0 < A <-> -. ( 0 = A \/ A < 0 ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ ( A x. B ) < 0 ) -> ( 0 < A <-> -. ( 0 = A \/ A < 0 ) ) ) |
| 48 |
45 47
|
mpbird |
|- ( ( ph /\ ( A x. B ) < 0 ) -> 0 < A ) |
| 49 |
25 48
|
impbida |
|- ( ph -> ( 0 < A <-> ( A x. B ) < 0 ) ) |