| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullt0b1d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
mullt0b1d.b |
|- ( ph -> B e. RR ) |
| 3 |
|
mullt0b1d.1 |
|- ( ph -> A < 0 ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ 0 < B ) -> A e. RR ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ 0 < B ) -> B e. RR ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ 0 < B ) -> A < 0 ) |
| 7 |
|
simpr |
|- ( ( ph /\ 0 < B ) -> 0 < B ) |
| 8 |
4 5 6 7
|
mulltgt0d |
|- ( ( ph /\ 0 < B ) -> ( A x. B ) < 0 ) |
| 9 |
3
|
lt0ne0d |
|- ( ph -> A =/= 0 ) |
| 10 |
1 9
|
sn-rereccld |
|- ( ph -> ( 1 /R A ) e. RR ) |
| 11 |
1 2
|
remulcld |
|- ( ph -> ( A x. B ) e. RR ) |
| 12 |
10 11
|
remulneg2d |
|- ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) ) |
| 13 |
1 9
|
rerecid2 |
|- ( ph -> ( ( 1 /R A ) x. A ) = 1 ) |
| 14 |
13
|
oveq1d |
|- ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( 1 x. B ) ) |
| 15 |
10
|
recnd |
|- ( ph -> ( 1 /R A ) e. CC ) |
| 16 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 17 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 18 |
15 16 17
|
mulassd |
|- ( ph -> ( ( ( 1 /R A ) x. A ) x. B ) = ( ( 1 /R A ) x. ( A x. B ) ) ) |
| 19 |
|
remullid |
|- ( B e. RR -> ( 1 x. B ) = B ) |
| 20 |
2 19
|
syl |
|- ( ph -> ( 1 x. B ) = B ) |
| 21 |
14 18 20
|
3eqtr3d |
|- ( ph -> ( ( 1 /R A ) x. ( A x. B ) ) = B ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( 0 -R ( ( 1 /R A ) x. ( A x. B ) ) ) = ( 0 -R B ) ) |
| 23 |
12 22
|
eqtrd |
|- ( ph -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) = ( 0 -R B ) ) |
| 25 |
10
|
adantr |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) e. RR ) |
| 26 |
|
rernegcl |
|- ( ( A x. B ) e. RR -> ( 0 -R ( A x. B ) ) e. RR ) |
| 27 |
11 26
|
syl |
|- ( ph -> ( 0 -R ( A x. B ) ) e. RR ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 0 -R ( A x. B ) ) e. RR ) |
| 29 |
1 3
|
sn-reclt0d |
|- ( ph -> ( 1 /R A ) < 0 ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 1 /R A ) < 0 ) |
| 31 |
|
simpr |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> 0 < ( 0 -R ( A x. B ) ) ) |
| 32 |
25 28 30 31
|
mulltgt0d |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( ( 1 /R A ) x. ( 0 -R ( A x. B ) ) ) < 0 ) |
| 33 |
24 32
|
eqbrtrrd |
|- ( ( ph /\ 0 < ( 0 -R ( A x. B ) ) ) -> ( 0 -R B ) < 0 ) |
| 34 |
33
|
ex |
|- ( ph -> ( 0 < ( 0 -R ( A x. B ) ) -> ( 0 -R B ) < 0 ) ) |
| 35 |
|
relt0neg1 |
|- ( ( A x. B ) e. RR -> ( ( A x. B ) < 0 <-> 0 < ( 0 -R ( A x. B ) ) ) ) |
| 36 |
11 35
|
syl |
|- ( ph -> ( ( A x. B ) < 0 <-> 0 < ( 0 -R ( A x. B ) ) ) ) |
| 37 |
|
relt0neg2 |
|- ( B e. RR -> ( 0 < B <-> ( 0 -R B ) < 0 ) ) |
| 38 |
2 37
|
syl |
|- ( ph -> ( 0 < B <-> ( 0 -R B ) < 0 ) ) |
| 39 |
34 36 38
|
3imtr4d |
|- ( ph -> ( ( A x. B ) < 0 -> 0 < B ) ) |
| 40 |
39
|
imp |
|- ( ( ph /\ ( A x. B ) < 0 ) -> 0 < B ) |
| 41 |
8 40
|
impbida |
|- ( ph -> ( 0 < B <-> ( A x. B ) < 0 ) ) |