Metamath Proof Explorer


Theorem sn-reclt0d

Description: The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses sn-reclt0d.a
|- ( ph -> A e. RR )
sn-reclt0d.z
|- ( ph -> A < 0 )
Assertion sn-reclt0d
|- ( ph -> ( 1 /R A ) < 0 )

Proof

Step Hyp Ref Expression
1 sn-reclt0d.a
 |-  ( ph -> A e. RR )
2 sn-reclt0d.z
 |-  ( ph -> A < 0 )
3 2 lt0ne0d
 |-  ( ph -> A =/= 0 )
4 1 3 sn-rereccld
 |-  ( ph -> ( 1 /R A ) e. RR )
5 rernegcl
 |-  ( A e. RR -> ( 0 -R A ) e. RR )
6 1 5 syl
 |-  ( ph -> ( 0 -R A ) e. RR )
7 relt0neg1
 |-  ( A e. RR -> ( A < 0 <-> 0 < ( 0 -R A ) ) )
8 1 7 syl
 |-  ( ph -> ( A < 0 <-> 0 < ( 0 -R A ) ) )
9 2 8 mpbid
 |-  ( ph -> 0 < ( 0 -R A ) )
10 4 1 remulneg2d
 |-  ( ph -> ( ( 1 /R A ) x. ( 0 -R A ) ) = ( 0 -R ( ( 1 /R A ) x. A ) ) )
11 1 3 rerecid2
 |-  ( ph -> ( ( 1 /R A ) x. A ) = 1 )
12 11 oveq2d
 |-  ( ph -> ( 0 -R ( ( 1 /R A ) x. A ) ) = ( 0 -R 1 ) )
13 10 12 eqtrd
 |-  ( ph -> ( ( 1 /R A ) x. ( 0 -R A ) ) = ( 0 -R 1 ) )
14 reneg1lt0
 |-  ( 0 -R 1 ) < 0
15 14 a1i
 |-  ( ph -> ( 0 -R 1 ) < 0 )
16 13 15 eqbrtrd
 |-  ( ph -> ( ( 1 /R A ) x. ( 0 -R A ) ) < 0 )
17 4 6 9 16 mulgt0con1d
 |-  ( ph -> ( 1 /R A ) < 0 )