Description: Lemma for sn-inelr . (Contributed by SN, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | reneg1lt0 | |- ( 0 -R 1 ) < 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-0lt1 | |- 0 < 1 |
|
2 | 1re | |- 1 e. RR |
|
3 | relt0neg2 | |- ( 1 e. RR -> ( 0 < 1 <-> ( 0 -R 1 ) < 0 ) ) |
|
4 | 2 3 | ax-mp | |- ( 0 < 1 <-> ( 0 -R 1 ) < 0 ) |
5 | 1 4 | mpbi | |- ( 0 -R 1 ) < 0 |