Description: Lemma for sn-inelr . (Contributed by SN, 1-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reneg1lt0 | |- ( 0 -R 1 ) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-0lt1 | |- 0 < 1 |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | relt0neg2 | |- ( 1 e. RR -> ( 0 < 1 <-> ( 0 -R 1 ) < 0 ) ) |
|
| 4 | 2 3 | ax-mp | |- ( 0 < 1 <-> ( 0 -R 1 ) < 0 ) |
| 5 | 1 4 | mpbi | |- ( 0 -R 1 ) < 0 |