Metamath Proof Explorer


Theorem reneg1lt0

Description: Lemma for sn-inelr . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion reneg1lt0 0-1<0

Proof

Step Hyp Ref Expression
1 sn-0lt1 0<1
2 1re 1
3 relt0neg2 10<10-1<0
4 2 3 ax-mp 0<10-1<0
5 1 4 mpbi 0-1<0