Metamath Proof Explorer


Theorem reneg1lt0

Description: Lemma for sn-inelr . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion reneg1lt0 ( 0 − 1 ) < 0

Proof

Step Hyp Ref Expression
1 sn-0lt1 0 < 1
2 1re 1 ∈ ℝ
3 relt0neg2 ( 1 ∈ ℝ → ( 0 < 1 ↔ ( 0 − 1 ) < 0 ) )
4 2 3 ax-mp ( 0 < 1 ↔ ( 0 − 1 ) < 0 )
5 1 4 mpbi ( 0 − 1 ) < 0