Metamath Proof Explorer


Theorem sn-inelr

Description: inelr without ax-mulcom . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion sn-inelr ¬ i ∈ ℝ

Proof

Step Hyp Ref Expression
1 reneg1lt0 ( 0 − 1 ) < 0
2 1re 1 ∈ ℝ
3 rernegcl ( 1 ∈ ℝ → ( 0 − 1 ) ∈ ℝ )
4 2 3 ax-mp ( 0 − 1 ) ∈ ℝ
5 0re 0 ∈ ℝ
6 4 5 ltnsymi ( ( 0 − 1 ) < 0 → ¬ 0 < ( 0 − 1 ) )
7 1 6 ax-mp ¬ 0 < ( 0 − 1 )
8 reixi ( i · i ) = ( 0 − 1 )
9 8 breq2i ( 0 < ( i · i ) ↔ 0 < ( 0 − 1 ) )
10 7 9 mtbir ¬ 0 < ( i · i )
11 id ( i ∈ ℝ → i ∈ ℝ )
12 0ne1 0 ≠ 1
13 12 a1i ( i ∈ ℝ → 0 ≠ 1 )
14 id ( i = 0 → i = 0 )
15 14 14 oveq12d ( i = 0 → ( i · i ) = ( 0 · 0 ) )
16 15 oveq1d ( i = 0 → ( ( i · i ) + 1 ) = ( ( 0 · 0 ) + 1 ) )
17 ax-i2m1 ( ( i · i ) + 1 ) = 0
18 remul02 ( 0 ∈ ℝ → ( 0 · 0 ) = 0 )
19 5 18 ax-mp ( 0 · 0 ) = 0
20 19 oveq1i ( ( 0 · 0 ) + 1 ) = ( 0 + 1 )
21 readdlid ( 1 ∈ ℝ → ( 0 + 1 ) = 1 )
22 2 21 ax-mp ( 0 + 1 ) = 1
23 20 22 eqtri ( ( 0 · 0 ) + 1 ) = 1
24 16 17 23 3eqtr3g ( i = 0 → 0 = 1 )
25 24 adantl ( ( i ∈ ℝ ∧ i = 0 ) → 0 = 1 )
26 13 25 mteqand ( i ∈ ℝ → i ≠ 0 )
27 11 26 sn-msqgt0d ( i ∈ ℝ → 0 < ( i · i ) )
28 10 27 mto ¬ i ∈ ℝ