Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
lttri4 |
⊢ ( ( i ∈ ℝ ∧ 0 ∈ ℝ ) → ( i < 0 ∨ i = 0 ∨ 0 < i ) ) |
3 |
1 2
|
mpan2 |
⊢ ( i ∈ ℝ → ( i < 0 ∨ i = 0 ∨ 0 < i ) ) |
4 |
|
reneg1lt0 |
⊢ ( 0 −ℝ 1 ) < 0 |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
|
rernegcl |
⊢ ( 1 ∈ ℝ → ( 0 −ℝ 1 ) ∈ ℝ ) |
7 |
5 6
|
ax-mp |
⊢ ( 0 −ℝ 1 ) ∈ ℝ |
8 |
7 1
|
ltnsymi |
⊢ ( ( 0 −ℝ 1 ) < 0 → ¬ 0 < ( 0 −ℝ 1 ) ) |
9 |
4 8
|
ax-mp |
⊢ ¬ 0 < ( 0 −ℝ 1 ) |
10 |
|
relt0neg1 |
⊢ ( i ∈ ℝ → ( i < 0 ↔ 0 < ( 0 −ℝ i ) ) ) |
11 |
|
rernegcl |
⊢ ( i ∈ ℝ → ( 0 −ℝ i ) ∈ ℝ ) |
12 |
|
mulgt0 |
⊢ ( ( ( ( 0 −ℝ i ) ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) ∧ ( ( 0 −ℝ i ) ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) ) → 0 < ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) ) |
13 |
12
|
anidms |
⊢ ( ( ( 0 −ℝ i ) ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) → 0 < ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) ) |
14 |
11 13
|
sylan |
⊢ ( ( i ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) → 0 < ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) ) |
15 |
|
elre0re |
⊢ ( i ∈ ℝ → 0 ∈ ℝ ) |
16 |
|
id |
⊢ ( i ∈ ℝ → i ∈ ℝ ) |
17 |
|
resubdi |
⊢ ( ( ( 0 −ℝ i ) ∈ ℝ ∧ 0 ∈ ℝ ∧ i ∈ ℝ ) → ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) = ( ( ( 0 −ℝ i ) · 0 ) −ℝ ( ( 0 −ℝ i ) · i ) ) ) |
18 |
11 15 16 17
|
syl3anc |
⊢ ( i ∈ ℝ → ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) = ( ( ( 0 −ℝ i ) · 0 ) −ℝ ( ( 0 −ℝ i ) · i ) ) ) |
19 |
|
remul01 |
⊢ ( ( 0 −ℝ i ) ∈ ℝ → ( ( 0 −ℝ i ) · 0 ) = 0 ) |
20 |
11 19
|
syl |
⊢ ( i ∈ ℝ → ( ( 0 −ℝ i ) · 0 ) = 0 ) |
21 |
16 16
|
remulcld |
⊢ ( i ∈ ℝ → ( i · i ) ∈ ℝ ) |
22 |
16 21
|
remulcld |
⊢ ( i ∈ ℝ → ( i · ( i · i ) ) ∈ ℝ ) |
23 |
|
ipiiie0 |
⊢ ( i + ( i · ( i · i ) ) ) = 0 |
24 |
|
renegadd |
⊢ ( ( i ∈ ℝ ∧ ( i · ( i · i ) ) ∈ ℝ ) → ( ( 0 −ℝ i ) = ( i · ( i · i ) ) ↔ ( i + ( i · ( i · i ) ) ) = 0 ) ) |
25 |
23 24
|
mpbiri |
⊢ ( ( i ∈ ℝ ∧ ( i · ( i · i ) ) ∈ ℝ ) → ( 0 −ℝ i ) = ( i · ( i · i ) ) ) |
26 |
22 25
|
mpdan |
⊢ ( i ∈ ℝ → ( 0 −ℝ i ) = ( i · ( i · i ) ) ) |
27 |
26
|
oveq1d |
⊢ ( i ∈ ℝ → ( ( 0 −ℝ i ) · i ) = ( ( i · ( i · i ) ) · i ) ) |
28 |
|
ax-icn |
⊢ i ∈ ℂ |
29 |
28 28 28
|
mulassi |
⊢ ( ( i · i ) · i ) = ( i · ( i · i ) ) |
30 |
29
|
oveq1i |
⊢ ( ( ( i · i ) · i ) · i ) = ( ( i · ( i · i ) ) · i ) |
31 |
28 28
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
32 |
31 28 28
|
mulassi |
⊢ ( ( ( i · i ) · i ) · i ) = ( ( i · i ) · ( i · i ) ) |
33 |
30 32
|
eqtr3i |
⊢ ( ( i · ( i · i ) ) · i ) = ( ( i · i ) · ( i · i ) ) |
34 |
33
|
a1i |
⊢ ( i ∈ ℝ → ( ( i · ( i · i ) ) · i ) = ( ( i · i ) · ( i · i ) ) ) |
35 |
|
rei4 |
⊢ ( ( i · i ) · ( i · i ) ) = 1 |
36 |
35
|
a1i |
⊢ ( i ∈ ℝ → ( ( i · i ) · ( i · i ) ) = 1 ) |
37 |
27 34 36
|
3eqtrd |
⊢ ( i ∈ ℝ → ( ( 0 −ℝ i ) · i ) = 1 ) |
38 |
20 37
|
oveq12d |
⊢ ( i ∈ ℝ → ( ( ( 0 −ℝ i ) · 0 ) −ℝ ( ( 0 −ℝ i ) · i ) ) = ( 0 −ℝ 1 ) ) |
39 |
18 38
|
eqtrd |
⊢ ( i ∈ ℝ → ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) = ( 0 −ℝ 1 ) ) |
40 |
39
|
breq2d |
⊢ ( i ∈ ℝ → ( 0 < ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) ↔ 0 < ( 0 −ℝ 1 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( i ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) → ( 0 < ( ( 0 −ℝ i ) · ( 0 −ℝ i ) ) ↔ 0 < ( 0 −ℝ 1 ) ) ) |
42 |
14 41
|
mpbid |
⊢ ( ( i ∈ ℝ ∧ 0 < ( 0 −ℝ i ) ) → 0 < ( 0 −ℝ 1 ) ) |
43 |
42
|
ex |
⊢ ( i ∈ ℝ → ( 0 < ( 0 −ℝ i ) → 0 < ( 0 −ℝ 1 ) ) ) |
44 |
10 43
|
sylbid |
⊢ ( i ∈ ℝ → ( i < 0 → 0 < ( 0 −ℝ 1 ) ) ) |
45 |
9 44
|
mtoi |
⊢ ( i ∈ ℝ → ¬ i < 0 ) |
46 |
|
0ne1 |
⊢ 0 ≠ 1 |
47 |
46
|
neii |
⊢ ¬ 0 = 1 |
48 |
|
oveq12 |
⊢ ( ( i = 0 ∧ i = 0 ) → ( i · i ) = ( 0 · 0 ) ) |
49 |
48
|
anidms |
⊢ ( i = 0 → ( i · i ) = ( 0 · 0 ) ) |
50 |
49
|
oveq1d |
⊢ ( i = 0 → ( ( i · i ) + 1 ) = ( ( 0 · 0 ) + 1 ) ) |
51 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
52 |
|
remul02 |
⊢ ( 0 ∈ ℝ → ( 0 · 0 ) = 0 ) |
53 |
1 52
|
ax-mp |
⊢ ( 0 · 0 ) = 0 |
54 |
53
|
oveq1i |
⊢ ( ( 0 · 0 ) + 1 ) = ( 0 + 1 ) |
55 |
|
readdid2 |
⊢ ( 1 ∈ ℝ → ( 0 + 1 ) = 1 ) |
56 |
5 55
|
ax-mp |
⊢ ( 0 + 1 ) = 1 |
57 |
54 56
|
eqtri |
⊢ ( ( 0 · 0 ) + 1 ) = 1 |
58 |
50 51 57
|
3eqtr3g |
⊢ ( i = 0 → 0 = 1 ) |
59 |
47 58
|
mto |
⊢ ¬ i = 0 |
60 |
59
|
a1i |
⊢ ( i ∈ ℝ → ¬ i = 0 ) |
61 |
|
mulgt0 |
⊢ ( ( ( i ∈ ℝ ∧ 0 < i ) ∧ ( i ∈ ℝ ∧ 0 < i ) ) → 0 < ( i · i ) ) |
62 |
61
|
anidms |
⊢ ( ( i ∈ ℝ ∧ 0 < i ) → 0 < ( i · i ) ) |
63 |
|
reixi |
⊢ ( i · i ) = ( 0 −ℝ 1 ) |
64 |
62 63
|
breqtrdi |
⊢ ( ( i ∈ ℝ ∧ 0 < i ) → 0 < ( 0 −ℝ 1 ) ) |
65 |
64
|
ex |
⊢ ( i ∈ ℝ → ( 0 < i → 0 < ( 0 −ℝ 1 ) ) ) |
66 |
9 65
|
mtoi |
⊢ ( i ∈ ℝ → ¬ 0 < i ) |
67 |
|
3ioran |
⊢ ( ¬ ( i < 0 ∨ i = 0 ∨ 0 < i ) ↔ ( ¬ i < 0 ∧ ¬ i = 0 ∧ ¬ 0 < i ) ) |
68 |
45 60 66 67
|
syl3anbrc |
⊢ ( i ∈ ℝ → ¬ ( i < 0 ∨ i = 0 ∨ 0 < i ) ) |
69 |
3 68
|
pm2.65i |
⊢ ¬ i ∈ ℝ |