| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | lttri4 | ⊢ ( ( i  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( i  <  0  ∨  i  =  0  ∨  0  <  i ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( i  ∈  ℝ  →  ( i  <  0  ∨  i  =  0  ∨  0  <  i ) ) | 
						
							| 4 |  | reneg1lt0 | ⊢ ( 0  −ℝ  1 )  <  0 | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 |  | rernegcl | ⊢ ( 1  ∈  ℝ  →  ( 0  −ℝ  1 )  ∈  ℝ ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 0  −ℝ  1 )  ∈  ℝ | 
						
							| 8 | 7 1 | ltnsymi | ⊢ ( ( 0  −ℝ  1 )  <  0  →  ¬  0  <  ( 0  −ℝ  1 ) ) | 
						
							| 9 | 4 8 | ax-mp | ⊢ ¬  0  <  ( 0  −ℝ  1 ) | 
						
							| 10 |  | relt0neg1 | ⊢ ( i  ∈  ℝ  →  ( i  <  0  ↔  0  <  ( 0  −ℝ  i ) ) ) | 
						
							| 11 |  | rernegcl | ⊢ ( i  ∈  ℝ  →  ( 0  −ℝ  i )  ∈  ℝ ) | 
						
							| 12 |  | mulgt0 | ⊢ ( ( ( ( 0  −ℝ  i )  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) )  ∧  ( ( 0  −ℝ  i )  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) ) )  →  0  <  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) ) ) | 
						
							| 13 | 12 | anidms | ⊢ ( ( ( 0  −ℝ  i )  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) )  →  0  <  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) ) ) | 
						
							| 14 | 11 13 | sylan | ⊢ ( ( i  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) )  →  0  <  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) ) ) | 
						
							| 15 |  | id | ⊢ ( i  ∈  ℝ  →  i  ∈  ℝ ) | 
						
							| 16 | 11 15 | remulneg2d | ⊢ ( i  ∈  ℝ  →  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) )  =  ( 0  −ℝ  ( ( 0  −ℝ  i )  ·  i ) ) ) | 
						
							| 17 | 15 15 | remulcld | ⊢ ( i  ∈  ℝ  →  ( i  ·  i )  ∈  ℝ ) | 
						
							| 18 | 15 17 | remulcld | ⊢ ( i  ∈  ℝ  →  ( i  ·  ( i  ·  i ) )  ∈  ℝ ) | 
						
							| 19 |  | ipiiie0 | ⊢ ( i  +  ( i  ·  ( i  ·  i ) ) )  =  0 | 
						
							| 20 |  | renegadd | ⊢ ( ( i  ∈  ℝ  ∧  ( i  ·  ( i  ·  i ) )  ∈  ℝ )  →  ( ( 0  −ℝ  i )  =  ( i  ·  ( i  ·  i ) )  ↔  ( i  +  ( i  ·  ( i  ·  i ) ) )  =  0 ) ) | 
						
							| 21 | 19 20 | mpbiri | ⊢ ( ( i  ∈  ℝ  ∧  ( i  ·  ( i  ·  i ) )  ∈  ℝ )  →  ( 0  −ℝ  i )  =  ( i  ·  ( i  ·  i ) ) ) | 
						
							| 22 | 18 21 | mpdan | ⊢ ( i  ∈  ℝ  →  ( 0  −ℝ  i )  =  ( i  ·  ( i  ·  i ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( i  ∈  ℝ  →  ( ( 0  −ℝ  i )  ·  i )  =  ( ( i  ·  ( i  ·  i ) )  ·  i ) ) | 
						
							| 24 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 25 | 24 24 24 | mulassi | ⊢ ( ( i  ·  i )  ·  i )  =  ( i  ·  ( i  ·  i ) ) | 
						
							| 26 | 25 | oveq1i | ⊢ ( ( ( i  ·  i )  ·  i )  ·  i )  =  ( ( i  ·  ( i  ·  i ) )  ·  i ) | 
						
							| 27 | 24 24 | mulcli | ⊢ ( i  ·  i )  ∈  ℂ | 
						
							| 28 | 27 24 24 | mulassi | ⊢ ( ( ( i  ·  i )  ·  i )  ·  i )  =  ( ( i  ·  i )  ·  ( i  ·  i ) ) | 
						
							| 29 | 26 28 | eqtr3i | ⊢ ( ( i  ·  ( i  ·  i ) )  ·  i )  =  ( ( i  ·  i )  ·  ( i  ·  i ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( i  ∈  ℝ  →  ( ( i  ·  ( i  ·  i ) )  ·  i )  =  ( ( i  ·  i )  ·  ( i  ·  i ) ) ) | 
						
							| 31 |  | rei4 | ⊢ ( ( i  ·  i )  ·  ( i  ·  i ) )  =  1 | 
						
							| 32 | 31 | a1i | ⊢ ( i  ∈  ℝ  →  ( ( i  ·  i )  ·  ( i  ·  i ) )  =  1 ) | 
						
							| 33 | 23 30 32 | 3eqtrd | ⊢ ( i  ∈  ℝ  →  ( ( 0  −ℝ  i )  ·  i )  =  1 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( i  ∈  ℝ  →  ( 0  −ℝ  ( ( 0  −ℝ  i )  ·  i ) )  =  ( 0  −ℝ  1 ) ) | 
						
							| 35 | 16 34 | eqtrd | ⊢ ( i  ∈  ℝ  →  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) )  =  ( 0  −ℝ  1 ) ) | 
						
							| 36 | 35 | breq2d | ⊢ ( i  ∈  ℝ  →  ( 0  <  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) )  ↔  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( i  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) )  →  ( 0  <  ( ( 0  −ℝ  i )  ·  ( 0  −ℝ  i ) )  ↔  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 38 | 14 37 | mpbid | ⊢ ( ( i  ∈  ℝ  ∧  0  <  ( 0  −ℝ  i ) )  →  0  <  ( 0  −ℝ  1 ) ) | 
						
							| 39 | 38 | ex | ⊢ ( i  ∈  ℝ  →  ( 0  <  ( 0  −ℝ  i )  →  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 40 | 10 39 | sylbid | ⊢ ( i  ∈  ℝ  →  ( i  <  0  →  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 41 | 9 40 | mtoi | ⊢ ( i  ∈  ℝ  →  ¬  i  <  0 ) | 
						
							| 42 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 43 | 42 | neii | ⊢ ¬  0  =  1 | 
						
							| 44 |  | oveq12 | ⊢ ( ( i  =  0  ∧  i  =  0 )  →  ( i  ·  i )  =  ( 0  ·  0 ) ) | 
						
							| 45 | 44 | anidms | ⊢ ( i  =  0  →  ( i  ·  i )  =  ( 0  ·  0 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( i  =  0  →  ( ( i  ·  i )  +  1 )  =  ( ( 0  ·  0 )  +  1 ) ) | 
						
							| 47 |  | ax-i2m1 | ⊢ ( ( i  ·  i )  +  1 )  =  0 | 
						
							| 48 |  | remul02 | ⊢ ( 0  ∈  ℝ  →  ( 0  ·  0 )  =  0 ) | 
						
							| 49 | 1 48 | ax-mp | ⊢ ( 0  ·  0 )  =  0 | 
						
							| 50 | 49 | oveq1i | ⊢ ( ( 0  ·  0 )  +  1 )  =  ( 0  +  1 ) | 
						
							| 51 |  | readdlid | ⊢ ( 1  ∈  ℝ  →  ( 0  +  1 )  =  1 ) | 
						
							| 52 | 5 51 | ax-mp | ⊢ ( 0  +  1 )  =  1 | 
						
							| 53 | 50 52 | eqtri | ⊢ ( ( 0  ·  0 )  +  1 )  =  1 | 
						
							| 54 | 46 47 53 | 3eqtr3g | ⊢ ( i  =  0  →  0  =  1 ) | 
						
							| 55 | 43 54 | mto | ⊢ ¬  i  =  0 | 
						
							| 56 | 55 | a1i | ⊢ ( i  ∈  ℝ  →  ¬  i  =  0 ) | 
						
							| 57 |  | mulgt0 | ⊢ ( ( ( i  ∈  ℝ  ∧  0  <  i )  ∧  ( i  ∈  ℝ  ∧  0  <  i ) )  →  0  <  ( i  ·  i ) ) | 
						
							| 58 | 57 | anidms | ⊢ ( ( i  ∈  ℝ  ∧  0  <  i )  →  0  <  ( i  ·  i ) ) | 
						
							| 59 |  | reixi | ⊢ ( i  ·  i )  =  ( 0  −ℝ  1 ) | 
						
							| 60 | 58 59 | breqtrdi | ⊢ ( ( i  ∈  ℝ  ∧  0  <  i )  →  0  <  ( 0  −ℝ  1 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( i  ∈  ℝ  →  ( 0  <  i  →  0  <  ( 0  −ℝ  1 ) ) ) | 
						
							| 62 | 9 61 | mtoi | ⊢ ( i  ∈  ℝ  →  ¬  0  <  i ) | 
						
							| 63 |  | 3ioran | ⊢ ( ¬  ( i  <  0  ∨  i  =  0  ∨  0  <  i )  ↔  ( ¬  i  <  0  ∧  ¬  i  =  0  ∧  ¬  0  <  i ) ) | 
						
							| 64 | 41 56 62 63 | syl3anbrc | ⊢ ( i  ∈  ℝ  →  ¬  ( i  <  0  ∨  i  =  0  ∨  0  <  i ) ) | 
						
							| 65 | 3 64 | pm2.65i | ⊢ ¬  i  ∈  ℝ |