Metamath Proof Explorer


Theorem sn-inelr

Description: inelr without ax-mulcom . (Contributed by SN, 1-Jun-2024)

Ref Expression
Assertion sn-inelr ¬ i

Proof

Step Hyp Ref Expression
1 reneg1lt0 0 - 1 < 0
2 1re 1
3 rernegcl 1 0 - 1
4 2 3 ax-mp 0 - 1
5 0re 0
6 4 5 ltnsymi 0 - 1 < 0 ¬ 0 < 0 - 1
7 1 6 ax-mp ¬ 0 < 0 - 1
8 reixi i i = 0 - 1
9 8 breq2i 0 < i i 0 < 0 - 1
10 7 9 mtbir ¬ 0 < i i
11 id i i
12 0ne1 0 1
13 12 a1i i 0 1
14 id i = 0 i = 0
15 14 14 oveq12d i = 0 i i = 0 0
16 15 oveq1d i = 0 i i + 1 = 0 0 + 1
17 ax-i2m1 i i + 1 = 0
18 remul02 0 0 0 = 0
19 5 18 ax-mp 0 0 = 0
20 19 oveq1i 0 0 + 1 = 0 + 1
21 readdlid 1 0 + 1 = 1
22 2 21 ax-mp 0 + 1 = 1
23 20 22 eqtri 0 0 + 1 = 1
24 16 17 23 3eqtr3g i = 0 0 = 1
25 24 adantl i i = 0 0 = 1
26 13 25 mteqand i i 0
27 11 26 sn-msqgt0d i 0 < i i
28 10 27 mto ¬ i