Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Arithmetic theorems
itrere
Next ⟩
retire
Metamath Proof Explorer
Ascii
Unicode
Theorem
itrere
Description:
_i
times a real is real iff the real is zero.
(Contributed by
SN
, 25-Apr-2025)
Ref
Expression
Assertion
itrere
⊢
R
∈
ℝ
→
i
⁢
R
∈
ℝ
↔
R
=
0
Proof
Step
Hyp
Ref
Expression
1
rimul
⊢
R
∈
ℝ
∧
i
⁢
R
∈
ℝ
→
R
=
0
2
1
ex
⊢
R
∈
ℝ
→
i
⁢
R
∈
ℝ
→
R
=
0
3
oveq2
⊢
R
=
0
→
i
⁢
R
=
i
⋅
0
4
it0e0
⊢
i
⋅
0
=
0
5
0re
⊢
0
∈
ℝ
6
4
5
eqeltri
⊢
i
⋅
0
∈
ℝ
7
3
6
eqeltrdi
⊢
R
=
0
→
i
⁢
R
∈
ℝ
8
2
7
impbid1
⊢
R
∈
ℝ
→
i
⁢
R
∈
ℝ
↔
R
=
0