Metamath Proof Explorer


Theorem itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Assertion itrere R i R R = 0

Proof

Step Hyp Ref Expression
1 rimul R i R R = 0
2 1 ex R i R R = 0
3 oveq2 R = 0 i R = i 0
4 it0e0 i 0 = 0
5 0re 0
6 4 5 eqeltri i 0
7 3 6 eqeltrdi R = 0 i R
8 2 7 impbid1 R i R R = 0