Metamath Proof Explorer


Theorem retire

Description: Commuted version of itrere . (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion retire R R i R = 0

Proof

Step Hyp Ref Expression
1 ax-rrecex R R 0 x R x = 1
2 sn-inelr ¬ i
3 simplll R R 0 x R x = 1 R i R
4 simplrl R R 0 x R x = 1 R i x
5 simplrr R R 0 x R x = 1 R i R x = 1
6 3 4 5 remulinvcom R R 0 x R x = 1 R i x R = 1
7 6 oveq1d R R 0 x R x = 1 R i x R i = 1 i
8 4 recnd R R 0 x R x = 1 R i x
9 3 recnd R R 0 x R x = 1 R i R
10 ax-icn i
11 10 a1i R R 0 x R x = 1 R i i
12 8 9 11 mulassd R R 0 x R x = 1 R i x R i = x R i
13 sn-1ticom 1 i = i 1
14 it1ei i 1 = i
15 13 14 eqtri 1 i = i
16 15 a1i R R 0 x R x = 1 R i 1 i = i
17 7 12 16 3eqtr3d R R 0 x R x = 1 R i x R i = i
18 simpr R R 0 x R x = 1 R i R i
19 4 18 remulcld R R 0 x R x = 1 R i x R i
20 17 19 eqeltrrd R R 0 x R x = 1 R i i
21 20 ex R R 0 x R x = 1 R i i
22 2 21 mtoi R R 0 x R x = 1 ¬ R i
23 1 22 rexlimddv R R 0 ¬ R i
24 23 ex R R 0 ¬ R i
25 24 necon4ad R R i R = 0
26 oveq1 R = 0 R i = 0 i
27 sn-0tie0 0 i = 0
28 0re 0
29 27 28 eqeltri 0 i
30 26 29 eqeltrdi R = 0 R i
31 25 30 impbid1 R R i R = 0