Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rrecex |
|- ( ( R e. RR /\ R =/= 0 ) -> E. x e. RR ( R x. x ) = 1 ) |
2 |
|
sn-inelr |
|- -. _i e. RR |
3 |
|
simplll |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> R e. RR ) |
4 |
|
simplrl |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> x e. RR ) |
5 |
|
simplrr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( R x. x ) = 1 ) |
6 |
3 4 5
|
remulinvcom |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( x x. R ) = 1 ) |
7 |
6
|
oveq1d |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( ( x x. R ) x. _i ) = ( 1 x. _i ) ) |
8 |
4
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> x e. CC ) |
9 |
3
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> R e. CC ) |
10 |
|
ax-icn |
|- _i e. CC |
11 |
10
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> _i e. CC ) |
12 |
8 9 11
|
mulassd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( ( x x. R ) x. _i ) = ( x x. ( R x. _i ) ) ) |
13 |
|
sn-1ticom |
|- ( 1 x. _i ) = ( _i x. 1 ) |
14 |
|
it1ei |
|- ( _i x. 1 ) = _i |
15 |
13 14
|
eqtri |
|- ( 1 x. _i ) = _i |
16 |
15
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( 1 x. _i ) = _i ) |
17 |
7 12 16
|
3eqtr3d |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( x x. ( R x. _i ) ) = _i ) |
18 |
|
simpr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( R x. _i ) e. RR ) |
19 |
4 18
|
remulcld |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> ( x x. ( R x. _i ) ) e. RR ) |
20 |
17 19
|
eqeltrrd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( R x. _i ) e. RR ) -> _i e. RR ) |
21 |
20
|
ex |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> ( ( R x. _i ) e. RR -> _i e. RR ) ) |
22 |
2 21
|
mtoi |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> -. ( R x. _i ) e. RR ) |
23 |
1 22
|
rexlimddv |
|- ( ( R e. RR /\ R =/= 0 ) -> -. ( R x. _i ) e. RR ) |
24 |
23
|
ex |
|- ( R e. RR -> ( R =/= 0 -> -. ( R x. _i ) e. RR ) ) |
25 |
24
|
necon4ad |
|- ( R e. RR -> ( ( R x. _i ) e. RR -> R = 0 ) ) |
26 |
|
oveq1 |
|- ( R = 0 -> ( R x. _i ) = ( 0 x. _i ) ) |
27 |
|
sn-0tie0 |
|- ( 0 x. _i ) = 0 |
28 |
|
0re |
|- 0 e. RR |
29 |
27 28
|
eqeltri |
|- ( 0 x. _i ) e. RR |
30 |
26 29
|
eqeltrdi |
|- ( R = 0 -> ( R x. _i ) e. RR ) |
31 |
25 30
|
impbid1 |
|- ( R e. RR -> ( ( R x. _i ) e. RR <-> R = 0 ) ) |