| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnreeu.r |
|- ( ph -> r e. RR ) |
| 2 |
|
cnreeu.s |
|- ( ph -> s e. RR ) |
| 3 |
|
cnreeu.t |
|- ( ph -> t e. RR ) |
| 4 |
|
cnreeu.u |
|- ( ph -> u e. RR ) |
| 5 |
|
oveq1 |
|- ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) |
| 6 |
5
|
oveq2d |
|- ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) |
| 7 |
1
|
recnd |
|- ( ph -> r e. CC ) |
| 8 |
|
ax-icn |
|- _i e. CC |
| 9 |
8
|
a1i |
|- ( ph -> _i e. CC ) |
| 10 |
2
|
recnd |
|- ( ph -> s e. CC ) |
| 11 |
9 10
|
mulcld |
|- ( ph -> ( _i x. s ) e. CC ) |
| 12 |
|
rernegcl |
|- ( s e. RR -> ( 0 -R s ) e. RR ) |
| 13 |
2 12
|
syl |
|- ( ph -> ( 0 -R s ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ph -> ( 0 -R s ) e. CC ) |
| 15 |
9 14
|
mulcld |
|- ( ph -> ( _i x. ( 0 -R s ) ) e. CC ) |
| 16 |
7 11 15
|
addassd |
|- ( ph -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = ( r + ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) ) |
| 17 |
|
renegid |
|- ( s e. RR -> ( s + ( 0 -R s ) ) = 0 ) |
| 18 |
2 17
|
syl |
|- ( ph -> ( s + ( 0 -R s ) ) = 0 ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( _i x. ( s + ( 0 -R s ) ) ) = ( _i x. 0 ) ) |
| 20 |
9 10 14
|
adddid |
|- ( ph -> ( _i x. ( s + ( 0 -R s ) ) ) = ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) |
| 21 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
| 22 |
21
|
a1i |
|- ( ph -> ( _i x. 0 ) = 0 ) |
| 23 |
19 20 22
|
3eqtr3d |
|- ( ph -> ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) = 0 ) |
| 24 |
23
|
oveq2d |
|- ( ph -> ( r + ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) = ( r + 0 ) ) |
| 25 |
|
readdrid |
|- ( r e. RR -> ( r + 0 ) = r ) |
| 26 |
1 25
|
syl |
|- ( ph -> ( r + 0 ) = r ) |
| 27 |
16 24 26
|
3eqtrd |
|- ( ph -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = r ) |
| 28 |
27
|
oveq2d |
|- ( ph -> ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + r ) ) |
| 29 |
|
rernegcl |
|- ( t e. RR -> ( 0 -R t ) e. RR ) |
| 30 |
3 29
|
syl |
|- ( ph -> ( 0 -R t ) e. RR ) |
| 31 |
30
|
recnd |
|- ( ph -> ( 0 -R t ) e. CC ) |
| 32 |
3
|
recnd |
|- ( ph -> t e. CC ) |
| 33 |
4
|
recnd |
|- ( ph -> u e. CC ) |
| 34 |
9 33
|
mulcld |
|- ( ph -> ( _i x. u ) e. CC ) |
| 35 |
31 32 34
|
addassd |
|- ( ph -> ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) = ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) ) |
| 36 |
35
|
oveq1d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) + ( _i x. ( 0 -R s ) ) ) ) |
| 37 |
|
sn-addlid |
|- ( ( _i x. u ) e. CC -> ( 0 + ( _i x. u ) ) = ( _i x. u ) ) |
| 38 |
34 37
|
syl |
|- ( ph -> ( 0 + ( _i x. u ) ) = ( _i x. u ) ) |
| 39 |
38
|
oveq1d |
|- ( ph -> ( ( 0 + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( _i x. u ) + ( _i x. ( 0 -R s ) ) ) ) |
| 40 |
|
renegid2 |
|- ( t e. RR -> ( ( 0 -R t ) + t ) = 0 ) |
| 41 |
3 40
|
syl |
|- ( ph -> ( ( 0 -R t ) + t ) = 0 ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) = ( 0 + ( _i x. u ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( 0 + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) |
| 44 |
9 33 14
|
adddid |
|- ( ph -> ( _i x. ( u + ( 0 -R s ) ) ) = ( ( _i x. u ) + ( _i x. ( 0 -R s ) ) ) ) |
| 45 |
39 43 44
|
3eqtr4d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
| 46 |
32 34
|
addcld |
|- ( ph -> ( t + ( _i x. u ) ) e. CC ) |
| 47 |
31 46 15
|
addassd |
|- ( ph -> ( ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) |
| 48 |
36 45 47
|
3eqtr3rd |
|- ( ph -> ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
| 49 |
28 48
|
eqeq12d |
|- ( ph -> ( ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) <-> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) ) |
| 50 |
49
|
biimpa |
|- ( ( ph /\ ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) -> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
| 51 |
|
simpr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
| 52 |
4
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> u e. RR ) |
| 53 |
13
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( 0 -R s ) e. RR ) |
| 54 |
52 53
|
readdcld |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( u + ( 0 -R s ) ) e. RR ) |
| 55 |
30
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( 0 -R t ) e. RR ) |
| 56 |
1
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> r e. RR ) |
| 57 |
55 56
|
readdcld |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) e. RR ) |
| 58 |
51 57
|
eqeltrrd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. ( u + ( 0 -R s ) ) ) e. RR ) |
| 59 |
|
sn-itrere |
|- ( ( u + ( 0 -R s ) ) e. RR -> ( ( _i x. ( u + ( 0 -R s ) ) ) e. RR <-> ( u + ( 0 -R s ) ) = 0 ) ) |
| 60 |
59
|
biimpa |
|- ( ( ( u + ( 0 -R s ) ) e. RR /\ ( _i x. ( u + ( 0 -R s ) ) ) e. RR ) -> ( u + ( 0 -R s ) ) = 0 ) |
| 61 |
54 58 60
|
syl2anc |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( u + ( 0 -R s ) ) = 0 ) |
| 62 |
61
|
oveq2d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. ( u + ( 0 -R s ) ) ) = ( _i x. 0 ) ) |
| 63 |
21
|
a1i |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. 0 ) = 0 ) |
| 64 |
51 62 63
|
3eqtrd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) = 0 ) |
| 65 |
|
oveq2 |
|- ( ( ( 0 -R t ) + r ) = 0 -> ( t + ( ( 0 -R t ) + r ) ) = ( t + 0 ) ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( ( 0 -R t ) + r ) ) = ( t + 0 ) ) |
| 67 |
|
renegid |
|- ( t e. RR -> ( t + ( 0 -R t ) ) = 0 ) |
| 68 |
3 67
|
syl |
|- ( ph -> ( t + ( 0 -R t ) ) = 0 ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( 0 -R t ) ) = 0 ) |
| 70 |
69
|
oveq1d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( ( t + ( 0 -R t ) ) + r ) = ( 0 + r ) ) |
| 71 |
32
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> t e. CC ) |
| 72 |
31
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( 0 -R t ) e. CC ) |
| 73 |
7
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> r e. CC ) |
| 74 |
71 72 73
|
addassd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( ( t + ( 0 -R t ) ) + r ) = ( t + ( ( 0 -R t ) + r ) ) ) |
| 75 |
|
readdlid |
|- ( r e. RR -> ( 0 + r ) = r ) |
| 76 |
1 75
|
syl |
|- ( ph -> ( 0 + r ) = r ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( 0 + r ) = r ) |
| 78 |
70 74 77
|
3eqtr3d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( ( 0 -R t ) + r ) ) = r ) |
| 79 |
3
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> t e. RR ) |
| 80 |
|
readdrid |
|- ( t e. RR -> ( t + 0 ) = t ) |
| 81 |
79 80
|
syl |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + 0 ) = t ) |
| 82 |
66 78 81
|
3eqtr3d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> r = t ) |
| 83 |
64 82
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> r = t ) |
| 84 |
33 14 10
|
addassd |
|- ( ph -> ( ( u + ( 0 -R s ) ) + s ) = ( u + ( ( 0 -R s ) + s ) ) ) |
| 85 |
|
renegid2 |
|- ( s e. RR -> ( ( 0 -R s ) + s ) = 0 ) |
| 86 |
2 85
|
syl |
|- ( ph -> ( ( 0 -R s ) + s ) = 0 ) |
| 87 |
86
|
oveq2d |
|- ( ph -> ( u + ( ( 0 -R s ) + s ) ) = ( u + 0 ) ) |
| 88 |
|
readdrid |
|- ( u e. RR -> ( u + 0 ) = u ) |
| 89 |
4 88
|
syl |
|- ( ph -> ( u + 0 ) = u ) |
| 90 |
84 87 89
|
3eqtrd |
|- ( ph -> ( ( u + ( 0 -R s ) ) + s ) = u ) |
| 91 |
|
oveq1 |
|- ( ( u + ( 0 -R s ) ) = 0 -> ( ( u + ( 0 -R s ) ) + s ) = ( 0 + s ) ) |
| 92 |
90 91
|
sylan9req |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> u = ( 0 + s ) ) |
| 93 |
|
readdlid |
|- ( s e. RR -> ( 0 + s ) = s ) |
| 94 |
2 93
|
syl |
|- ( ph -> ( 0 + s ) = s ) |
| 95 |
94
|
adantr |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> ( 0 + s ) = s ) |
| 96 |
92 95
|
eqtr2d |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> s = u ) |
| 97 |
61 96
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> s = u ) |
| 98 |
83 97
|
jca |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( r = t /\ s = u ) ) |
| 99 |
50 98
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) -> ( r = t /\ s = u ) ) |
| 100 |
99
|
ex |
|- ( ph -> ( ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) -> ( r = t /\ s = u ) ) ) |
| 101 |
6 100
|
syl5 |
|- ( ph -> ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( r = t /\ s = u ) ) ) |
| 102 |
|
id |
|- ( r = t -> r = t ) |
| 103 |
|
oveq2 |
|- ( s = u -> ( _i x. s ) = ( _i x. u ) ) |
| 104 |
102 103
|
oveqan12d |
|- ( ( r = t /\ s = u ) -> ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) ) |
| 105 |
101 104
|
impbid1 |
|- ( ph -> ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) <-> ( r = t /\ s = u ) ) ) |