Step |
Hyp |
Ref |
Expression |
1 |
|
cnreeu.r |
|- ( ph -> r e. RR ) |
2 |
|
cnreeu.s |
|- ( ph -> s e. RR ) |
3 |
|
cnreeu.t |
|- ( ph -> t e. RR ) |
4 |
|
cnreeu.u |
|- ( ph -> u e. RR ) |
5 |
|
oveq1 |
|- ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) |
6 |
5
|
oveq2d |
|- ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) |
7 |
1
|
recnd |
|- ( ph -> r e. CC ) |
8 |
|
ax-icn |
|- _i e. CC |
9 |
8
|
a1i |
|- ( ph -> _i e. CC ) |
10 |
2
|
recnd |
|- ( ph -> s e. CC ) |
11 |
9 10
|
mulcld |
|- ( ph -> ( _i x. s ) e. CC ) |
12 |
|
rernegcl |
|- ( s e. RR -> ( 0 -R s ) e. RR ) |
13 |
2 12
|
syl |
|- ( ph -> ( 0 -R s ) e. RR ) |
14 |
13
|
recnd |
|- ( ph -> ( 0 -R s ) e. CC ) |
15 |
9 14
|
mulcld |
|- ( ph -> ( _i x. ( 0 -R s ) ) e. CC ) |
16 |
7 11 15
|
addassd |
|- ( ph -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = ( r + ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) ) |
17 |
|
renegid |
|- ( s e. RR -> ( s + ( 0 -R s ) ) = 0 ) |
18 |
2 17
|
syl |
|- ( ph -> ( s + ( 0 -R s ) ) = 0 ) |
19 |
18
|
oveq2d |
|- ( ph -> ( _i x. ( s + ( 0 -R s ) ) ) = ( _i x. 0 ) ) |
20 |
9 10 14
|
adddid |
|- ( ph -> ( _i x. ( s + ( 0 -R s ) ) ) = ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) |
21 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
22 |
21
|
a1i |
|- ( ph -> ( _i x. 0 ) = 0 ) |
23 |
19 20 22
|
3eqtr3d |
|- ( ph -> ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) = 0 ) |
24 |
23
|
oveq2d |
|- ( ph -> ( r + ( ( _i x. s ) + ( _i x. ( 0 -R s ) ) ) ) = ( r + 0 ) ) |
25 |
|
readdid1 |
|- ( r e. RR -> ( r + 0 ) = r ) |
26 |
1 25
|
syl |
|- ( ph -> ( r + 0 ) = r ) |
27 |
16 24 26
|
3eqtrd |
|- ( ph -> ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) = r ) |
28 |
27
|
oveq2d |
|- ( ph -> ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + r ) ) |
29 |
|
rernegcl |
|- ( t e. RR -> ( 0 -R t ) e. RR ) |
30 |
3 29
|
syl |
|- ( ph -> ( 0 -R t ) e. RR ) |
31 |
30
|
recnd |
|- ( ph -> ( 0 -R t ) e. CC ) |
32 |
3
|
recnd |
|- ( ph -> t e. CC ) |
33 |
4
|
recnd |
|- ( ph -> u e. CC ) |
34 |
9 33
|
mulcld |
|- ( ph -> ( _i x. u ) e. CC ) |
35 |
31 32 34
|
addassd |
|- ( ph -> ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) = ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) ) |
36 |
35
|
oveq1d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) + ( _i x. ( 0 -R s ) ) ) ) |
37 |
|
sn-addid2 |
|- ( ( _i x. u ) e. CC -> ( 0 + ( _i x. u ) ) = ( _i x. u ) ) |
38 |
34 37
|
syl |
|- ( ph -> ( 0 + ( _i x. u ) ) = ( _i x. u ) ) |
39 |
38
|
oveq1d |
|- ( ph -> ( ( 0 + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( _i x. u ) + ( _i x. ( 0 -R s ) ) ) ) |
40 |
|
renegid2 |
|- ( t e. RR -> ( ( 0 -R t ) + t ) = 0 ) |
41 |
3 40
|
syl |
|- ( ph -> ( ( 0 -R t ) + t ) = 0 ) |
42 |
41
|
oveq1d |
|- ( ph -> ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) = ( 0 + ( _i x. u ) ) ) |
43 |
42
|
oveq1d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( 0 + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) |
44 |
9 33 14
|
adddid |
|- ( ph -> ( _i x. ( u + ( 0 -R s ) ) ) = ( ( _i x. u ) + ( _i x. ( 0 -R s ) ) ) ) |
45 |
39 43 44
|
3eqtr4d |
|- ( ph -> ( ( ( ( 0 -R t ) + t ) + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
46 |
32 34
|
addcld |
|- ( ph -> ( t + ( _i x. u ) ) e. CC ) |
47 |
31 46 15
|
addassd |
|- ( ph -> ( ( ( 0 -R t ) + ( t + ( _i x. u ) ) ) + ( _i x. ( 0 -R s ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) |
48 |
36 45 47
|
3eqtr3rd |
|- ( ph -> ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
49 |
28 48
|
eqeq12d |
|- ( ph -> ( ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) <-> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) ) |
50 |
49
|
biimpa |
|- ( ( ph /\ ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) -> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
51 |
|
simpr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) |
52 |
4
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> u e. RR ) |
53 |
13
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( 0 -R s ) e. RR ) |
54 |
52 53
|
readdcld |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( u + ( 0 -R s ) ) e. RR ) |
55 |
30
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( 0 -R t ) e. RR ) |
56 |
1
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> r e. RR ) |
57 |
55 56
|
readdcld |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) e. RR ) |
58 |
51 57
|
eqeltrrd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. ( u + ( 0 -R s ) ) ) e. RR ) |
59 |
|
itrere |
|- ( ( u + ( 0 -R s ) ) e. RR -> ( ( _i x. ( u + ( 0 -R s ) ) ) e. RR <-> ( u + ( 0 -R s ) ) = 0 ) ) |
60 |
59
|
biimpa |
|- ( ( ( u + ( 0 -R s ) ) e. RR /\ ( _i x. ( u + ( 0 -R s ) ) ) e. RR ) -> ( u + ( 0 -R s ) ) = 0 ) |
61 |
54 58 60
|
syl2anc |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( u + ( 0 -R s ) ) = 0 ) |
62 |
61
|
oveq2d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. ( u + ( 0 -R s ) ) ) = ( _i x. 0 ) ) |
63 |
21
|
a1i |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( _i x. 0 ) = 0 ) |
64 |
51 62 63
|
3eqtrd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( ( 0 -R t ) + r ) = 0 ) |
65 |
|
oveq2 |
|- ( ( ( 0 -R t ) + r ) = 0 -> ( t + ( ( 0 -R t ) + r ) ) = ( t + 0 ) ) |
66 |
65
|
adantl |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( ( 0 -R t ) + r ) ) = ( t + 0 ) ) |
67 |
|
renegid |
|- ( t e. RR -> ( t + ( 0 -R t ) ) = 0 ) |
68 |
3 67
|
syl |
|- ( ph -> ( t + ( 0 -R t ) ) = 0 ) |
69 |
68
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( 0 -R t ) ) = 0 ) |
70 |
69
|
oveq1d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( ( t + ( 0 -R t ) ) + r ) = ( 0 + r ) ) |
71 |
32
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> t e. CC ) |
72 |
31
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( 0 -R t ) e. CC ) |
73 |
7
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> r e. CC ) |
74 |
71 72 73
|
addassd |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( ( t + ( 0 -R t ) ) + r ) = ( t + ( ( 0 -R t ) + r ) ) ) |
75 |
|
readdid2 |
|- ( r e. RR -> ( 0 + r ) = r ) |
76 |
1 75
|
syl |
|- ( ph -> ( 0 + r ) = r ) |
77 |
76
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( 0 + r ) = r ) |
78 |
70 74 77
|
3eqtr3d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + ( ( 0 -R t ) + r ) ) = r ) |
79 |
3
|
adantr |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> t e. RR ) |
80 |
|
readdid1 |
|- ( t e. RR -> ( t + 0 ) = t ) |
81 |
79 80
|
syl |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> ( t + 0 ) = t ) |
82 |
66 78 81
|
3eqtr3d |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = 0 ) -> r = t ) |
83 |
64 82
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> r = t ) |
84 |
33 14 10
|
addassd |
|- ( ph -> ( ( u + ( 0 -R s ) ) + s ) = ( u + ( ( 0 -R s ) + s ) ) ) |
85 |
|
renegid2 |
|- ( s e. RR -> ( ( 0 -R s ) + s ) = 0 ) |
86 |
2 85
|
syl |
|- ( ph -> ( ( 0 -R s ) + s ) = 0 ) |
87 |
86
|
oveq2d |
|- ( ph -> ( u + ( ( 0 -R s ) + s ) ) = ( u + 0 ) ) |
88 |
|
readdid1 |
|- ( u e. RR -> ( u + 0 ) = u ) |
89 |
4 88
|
syl |
|- ( ph -> ( u + 0 ) = u ) |
90 |
84 87 89
|
3eqtrd |
|- ( ph -> ( ( u + ( 0 -R s ) ) + s ) = u ) |
91 |
|
oveq1 |
|- ( ( u + ( 0 -R s ) ) = 0 -> ( ( u + ( 0 -R s ) ) + s ) = ( 0 + s ) ) |
92 |
90 91
|
sylan9req |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> u = ( 0 + s ) ) |
93 |
|
readdid2 |
|- ( s e. RR -> ( 0 + s ) = s ) |
94 |
2 93
|
syl |
|- ( ph -> ( 0 + s ) = s ) |
95 |
94
|
adantr |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> ( 0 + s ) = s ) |
96 |
92 95
|
eqtr2d |
|- ( ( ph /\ ( u + ( 0 -R s ) ) = 0 ) -> s = u ) |
97 |
61 96
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> s = u ) |
98 |
83 97
|
jca |
|- ( ( ph /\ ( ( 0 -R t ) + r ) = ( _i x. ( u + ( 0 -R s ) ) ) ) -> ( r = t /\ s = u ) ) |
99 |
50 98
|
syldan |
|- ( ( ph /\ ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) ) -> ( r = t /\ s = u ) ) |
100 |
99
|
ex |
|- ( ph -> ( ( ( 0 -R t ) + ( ( r + ( _i x. s ) ) + ( _i x. ( 0 -R s ) ) ) ) = ( ( 0 -R t ) + ( ( t + ( _i x. u ) ) + ( _i x. ( 0 -R s ) ) ) ) -> ( r = t /\ s = u ) ) ) |
101 |
6 100
|
syl5 |
|- ( ph -> ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) -> ( r = t /\ s = u ) ) ) |
102 |
|
id |
|- ( r = t -> r = t ) |
103 |
|
oveq2 |
|- ( s = u -> ( _i x. s ) = ( _i x. u ) ) |
104 |
102 103
|
oveqan12d |
|- ( ( r = t /\ s = u ) -> ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) ) |
105 |
101 104
|
impbid1 |
|- ( ph -> ( ( r + ( _i x. s ) ) = ( t + ( _i x. u ) ) <-> ( r = t /\ s = u ) ) ) |