| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inelr |
|- -. _i e. RR |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
2
|
a1i |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> _i e. CC ) |
| 4 |
|
simpll |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R e. RR ) |
| 5 |
4
|
recnd |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R e. CC ) |
| 6 |
|
simplr |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> R =/= 0 ) |
| 7 |
3 5 6
|
divcan4d |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) / R ) = _i ) |
| 8 |
|
simpr |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( _i x. R ) e. RR ) |
| 9 |
8 4 6
|
redivcld |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) / R ) e. RR ) |
| 10 |
7 9
|
eqeltrrd |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( _i x. R ) e. RR ) -> _i e. RR ) |
| 11 |
10
|
ex |
|- ( ( R e. RR /\ R =/= 0 ) -> ( ( _i x. R ) e. RR -> _i e. RR ) ) |
| 12 |
1 11
|
mtoi |
|- ( ( R e. RR /\ R =/= 0 ) -> -. ( _i x. R ) e. RR ) |
| 13 |
12
|
ex |
|- ( R e. RR -> ( R =/= 0 -> -. ( _i x. R ) e. RR ) ) |
| 14 |
13
|
necon4ad |
|- ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) ) |
| 15 |
|
oveq2 |
|- ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) ) |
| 16 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 17 |
|
0re |
|- 0 e. RR |
| 18 |
16 17
|
eqeltri |
|- ( _i x. 0 ) e. RR |
| 19 |
15 18
|
eqeltrdi |
|- ( R = 0 -> ( _i x. R ) e. RR ) |
| 20 |
14 19
|
impbid1 |
|- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) ) |