Metamath Proof Explorer


Theorem itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Assertion itrere
|- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) )

Proof

Step Hyp Ref Expression
1 rimul
 |-  ( ( R e. RR /\ ( _i x. R ) e. RR ) -> R = 0 )
2 1 ex
 |-  ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) )
3 oveq2
 |-  ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) )
4 it0e0
 |-  ( _i x. 0 ) = 0
5 0re
 |-  0 e. RR
6 4 5 eqeltri
 |-  ( _i x. 0 ) e. RR
7 3 6 eqeltrdi
 |-  ( R = 0 -> ( _i x. R ) e. RR )
8 2 7 impbid1
 |-  ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) )