Description: _i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itrere | |- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimul | |- ( ( R e. RR /\ ( _i x. R ) e. RR ) -> R = 0 ) |
|
| 2 | 1 | ex | |- ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) ) |
| 3 | oveq2 | |- ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) ) |
|
| 4 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 4 5 | eqeltri | |- ( _i x. 0 ) e. RR |
| 7 | 3 6 | eqeltrdi | |- ( R = 0 -> ( _i x. R ) e. RR ) |
| 8 | 2 7 | impbid1 | |- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) ) |