Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rrecex |
|- ( ( R e. RR /\ R =/= 0 ) -> E. x e. RR ( R x. x ) = 1 ) |
2 |
|
sn-inelr |
|- -. _i e. RR |
3 |
|
ax-icn |
|- _i e. CC |
4 |
3
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> _i e. CC ) |
5 |
|
simplll |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> R e. RR ) |
6 |
5
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> R e. CC ) |
7 |
|
simplrl |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> x e. RR ) |
8 |
7
|
recnd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> x e. CC ) |
9 |
4 6 8
|
mulassd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) = ( _i x. ( R x. x ) ) ) |
10 |
|
simplrr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( R x. x ) = 1 ) |
11 |
10
|
oveq2d |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. ( R x. x ) ) = ( _i x. 1 ) ) |
12 |
|
it1ei |
|- ( _i x. 1 ) = _i |
13 |
12
|
a1i |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. 1 ) = _i ) |
14 |
9 11 13
|
3eqtrd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) = _i ) |
15 |
|
simpr |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( _i x. R ) e. RR ) |
16 |
15 7
|
remulcld |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> ( ( _i x. R ) x. x ) e. RR ) |
17 |
14 16
|
eqeltrrd |
|- ( ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) /\ ( _i x. R ) e. RR ) -> _i e. RR ) |
18 |
17
|
ex |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> ( ( _i x. R ) e. RR -> _i e. RR ) ) |
19 |
2 18
|
mtoi |
|- ( ( ( R e. RR /\ R =/= 0 ) /\ ( x e. RR /\ ( R x. x ) = 1 ) ) -> -. ( _i x. R ) e. RR ) |
20 |
1 19
|
rexlimddv |
|- ( ( R e. RR /\ R =/= 0 ) -> -. ( _i x. R ) e. RR ) |
21 |
20
|
ex |
|- ( R e. RR -> ( R =/= 0 -> -. ( _i x. R ) e. RR ) ) |
22 |
21
|
necon4ad |
|- ( R e. RR -> ( ( _i x. R ) e. RR -> R = 0 ) ) |
23 |
|
oveq2 |
|- ( R = 0 -> ( _i x. R ) = ( _i x. 0 ) ) |
24 |
|
sn-it0e0 |
|- ( _i x. 0 ) = 0 |
25 |
|
0re |
|- 0 e. RR |
26 |
24 25
|
eqeltri |
|- ( _i x. 0 ) e. RR |
27 |
23 26
|
eqeltrdi |
|- ( R = 0 -> ( _i x. R ) e. RR ) |
28 |
22 27
|
impbid1 |
|- ( R e. RR -> ( ( _i x. R ) e. RR <-> R = 0 ) ) |