Metamath Proof Explorer


Theorem itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Assertion itrere ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ ↔ 𝑅 = 0 ) )

Proof

Step Hyp Ref Expression
1 rimul ( ( 𝑅 ∈ ℝ ∧ ( i · 𝑅 ) ∈ ℝ ) → 𝑅 = 0 )
2 1 ex ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ → 𝑅 = 0 ) )
3 oveq2 ( 𝑅 = 0 → ( i · 𝑅 ) = ( i · 0 ) )
4 it0e0 ( i · 0 ) = 0
5 0re 0 ∈ ℝ
6 4 5 eqeltri ( i · 0 ) ∈ ℝ
7 3 6 eqeltrdi ( 𝑅 = 0 → ( i · 𝑅 ) ∈ ℝ )
8 2 7 impbid1 ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ ↔ 𝑅 = 0 ) )