Description: _i times a real is real iff the real is zero. (Contributed by SN, 25-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itrere | ⊢ ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ ↔ 𝑅 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimul | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( i · 𝑅 ) ∈ ℝ ) → 𝑅 = 0 ) | |
| 2 | 1 | ex | ⊢ ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ → 𝑅 = 0 ) ) |
| 3 | oveq2 | ⊢ ( 𝑅 = 0 → ( i · 𝑅 ) = ( i · 0 ) ) | |
| 4 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 4 5 | eqeltri | ⊢ ( i · 0 ) ∈ ℝ |
| 7 | 3 6 | eqeltrdi | ⊢ ( 𝑅 = 0 → ( i · 𝑅 ) ∈ ℝ ) |
| 8 | 2 7 | impbid1 | ⊢ ( 𝑅 ∈ ℝ → ( ( i · 𝑅 ) ∈ ℝ ↔ 𝑅 = 0 ) ) |