| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
lttri4 |
|- ( ( _i e. RR /\ 0 e. RR ) -> ( _i < 0 \/ _i = 0 \/ 0 < _i ) ) |
| 3 |
1 2
|
mpan2 |
|- ( _i e. RR -> ( _i < 0 \/ _i = 0 \/ 0 < _i ) ) |
| 4 |
|
reneg1lt0 |
|- ( 0 -R 1 ) < 0 |
| 5 |
|
1re |
|- 1 e. RR |
| 6 |
|
rernegcl |
|- ( 1 e. RR -> ( 0 -R 1 ) e. RR ) |
| 7 |
5 6
|
ax-mp |
|- ( 0 -R 1 ) e. RR |
| 8 |
7 1
|
ltnsymi |
|- ( ( 0 -R 1 ) < 0 -> -. 0 < ( 0 -R 1 ) ) |
| 9 |
4 8
|
ax-mp |
|- -. 0 < ( 0 -R 1 ) |
| 10 |
|
relt0neg1 |
|- ( _i e. RR -> ( _i < 0 <-> 0 < ( 0 -R _i ) ) ) |
| 11 |
|
rernegcl |
|- ( _i e. RR -> ( 0 -R _i ) e. RR ) |
| 12 |
|
mulgt0 |
|- ( ( ( ( 0 -R _i ) e. RR /\ 0 < ( 0 -R _i ) ) /\ ( ( 0 -R _i ) e. RR /\ 0 < ( 0 -R _i ) ) ) -> 0 < ( ( 0 -R _i ) x. ( 0 -R _i ) ) ) |
| 13 |
12
|
anidms |
|- ( ( ( 0 -R _i ) e. RR /\ 0 < ( 0 -R _i ) ) -> 0 < ( ( 0 -R _i ) x. ( 0 -R _i ) ) ) |
| 14 |
11 13
|
sylan |
|- ( ( _i e. RR /\ 0 < ( 0 -R _i ) ) -> 0 < ( ( 0 -R _i ) x. ( 0 -R _i ) ) ) |
| 15 |
|
id |
|- ( _i e. RR -> _i e. RR ) |
| 16 |
11 15
|
remulneg2d |
|- ( _i e. RR -> ( ( 0 -R _i ) x. ( 0 -R _i ) ) = ( 0 -R ( ( 0 -R _i ) x. _i ) ) ) |
| 17 |
15 15
|
remulcld |
|- ( _i e. RR -> ( _i x. _i ) e. RR ) |
| 18 |
15 17
|
remulcld |
|- ( _i e. RR -> ( _i x. ( _i x. _i ) ) e. RR ) |
| 19 |
|
ipiiie0 |
|- ( _i + ( _i x. ( _i x. _i ) ) ) = 0 |
| 20 |
|
renegadd |
|- ( ( _i e. RR /\ ( _i x. ( _i x. _i ) ) e. RR ) -> ( ( 0 -R _i ) = ( _i x. ( _i x. _i ) ) <-> ( _i + ( _i x. ( _i x. _i ) ) ) = 0 ) ) |
| 21 |
19 20
|
mpbiri |
|- ( ( _i e. RR /\ ( _i x. ( _i x. _i ) ) e. RR ) -> ( 0 -R _i ) = ( _i x. ( _i x. _i ) ) ) |
| 22 |
18 21
|
mpdan |
|- ( _i e. RR -> ( 0 -R _i ) = ( _i x. ( _i x. _i ) ) ) |
| 23 |
22
|
oveq1d |
|- ( _i e. RR -> ( ( 0 -R _i ) x. _i ) = ( ( _i x. ( _i x. _i ) ) x. _i ) ) |
| 24 |
|
ax-icn |
|- _i e. CC |
| 25 |
24 24 24
|
mulassi |
|- ( ( _i x. _i ) x. _i ) = ( _i x. ( _i x. _i ) ) |
| 26 |
25
|
oveq1i |
|- ( ( ( _i x. _i ) x. _i ) x. _i ) = ( ( _i x. ( _i x. _i ) ) x. _i ) |
| 27 |
24 24
|
mulcli |
|- ( _i x. _i ) e. CC |
| 28 |
27 24 24
|
mulassi |
|- ( ( ( _i x. _i ) x. _i ) x. _i ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
| 29 |
26 28
|
eqtr3i |
|- ( ( _i x. ( _i x. _i ) ) x. _i ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
| 30 |
29
|
a1i |
|- ( _i e. RR -> ( ( _i x. ( _i x. _i ) ) x. _i ) = ( ( _i x. _i ) x. ( _i x. _i ) ) ) |
| 31 |
|
rei4 |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) = 1 |
| 32 |
31
|
a1i |
|- ( _i e. RR -> ( ( _i x. _i ) x. ( _i x. _i ) ) = 1 ) |
| 33 |
23 30 32
|
3eqtrd |
|- ( _i e. RR -> ( ( 0 -R _i ) x. _i ) = 1 ) |
| 34 |
33
|
oveq2d |
|- ( _i e. RR -> ( 0 -R ( ( 0 -R _i ) x. _i ) ) = ( 0 -R 1 ) ) |
| 35 |
16 34
|
eqtrd |
|- ( _i e. RR -> ( ( 0 -R _i ) x. ( 0 -R _i ) ) = ( 0 -R 1 ) ) |
| 36 |
35
|
breq2d |
|- ( _i e. RR -> ( 0 < ( ( 0 -R _i ) x. ( 0 -R _i ) ) <-> 0 < ( 0 -R 1 ) ) ) |
| 37 |
36
|
adantr |
|- ( ( _i e. RR /\ 0 < ( 0 -R _i ) ) -> ( 0 < ( ( 0 -R _i ) x. ( 0 -R _i ) ) <-> 0 < ( 0 -R 1 ) ) ) |
| 38 |
14 37
|
mpbid |
|- ( ( _i e. RR /\ 0 < ( 0 -R _i ) ) -> 0 < ( 0 -R 1 ) ) |
| 39 |
38
|
ex |
|- ( _i e. RR -> ( 0 < ( 0 -R _i ) -> 0 < ( 0 -R 1 ) ) ) |
| 40 |
10 39
|
sylbid |
|- ( _i e. RR -> ( _i < 0 -> 0 < ( 0 -R 1 ) ) ) |
| 41 |
9 40
|
mtoi |
|- ( _i e. RR -> -. _i < 0 ) |
| 42 |
|
0ne1 |
|- 0 =/= 1 |
| 43 |
42
|
neii |
|- -. 0 = 1 |
| 44 |
|
oveq12 |
|- ( ( _i = 0 /\ _i = 0 ) -> ( _i x. _i ) = ( 0 x. 0 ) ) |
| 45 |
44
|
anidms |
|- ( _i = 0 -> ( _i x. _i ) = ( 0 x. 0 ) ) |
| 46 |
45
|
oveq1d |
|- ( _i = 0 -> ( ( _i x. _i ) + 1 ) = ( ( 0 x. 0 ) + 1 ) ) |
| 47 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
| 48 |
|
remul02 |
|- ( 0 e. RR -> ( 0 x. 0 ) = 0 ) |
| 49 |
1 48
|
ax-mp |
|- ( 0 x. 0 ) = 0 |
| 50 |
49
|
oveq1i |
|- ( ( 0 x. 0 ) + 1 ) = ( 0 + 1 ) |
| 51 |
|
readdlid |
|- ( 1 e. RR -> ( 0 + 1 ) = 1 ) |
| 52 |
5 51
|
ax-mp |
|- ( 0 + 1 ) = 1 |
| 53 |
50 52
|
eqtri |
|- ( ( 0 x. 0 ) + 1 ) = 1 |
| 54 |
46 47 53
|
3eqtr3g |
|- ( _i = 0 -> 0 = 1 ) |
| 55 |
43 54
|
mto |
|- -. _i = 0 |
| 56 |
55
|
a1i |
|- ( _i e. RR -> -. _i = 0 ) |
| 57 |
|
mulgt0 |
|- ( ( ( _i e. RR /\ 0 < _i ) /\ ( _i e. RR /\ 0 < _i ) ) -> 0 < ( _i x. _i ) ) |
| 58 |
57
|
anidms |
|- ( ( _i e. RR /\ 0 < _i ) -> 0 < ( _i x. _i ) ) |
| 59 |
|
reixi |
|- ( _i x. _i ) = ( 0 -R 1 ) |
| 60 |
58 59
|
breqtrdi |
|- ( ( _i e. RR /\ 0 < _i ) -> 0 < ( 0 -R 1 ) ) |
| 61 |
60
|
ex |
|- ( _i e. RR -> ( 0 < _i -> 0 < ( 0 -R 1 ) ) ) |
| 62 |
9 61
|
mtoi |
|- ( _i e. RR -> -. 0 < _i ) |
| 63 |
|
3ioran |
|- ( -. ( _i < 0 \/ _i = 0 \/ 0 < _i ) <-> ( -. _i < 0 /\ -. _i = 0 /\ -. 0 < _i ) ) |
| 64 |
41 56 62 63
|
syl3anbrc |
|- ( _i e. RR -> -. ( _i < 0 \/ _i = 0 \/ 0 < _i ) ) |
| 65 |
3 64
|
pm2.65i |
|- -. _i e. RR |